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On a Decomposit ion of  the Hitbert Space L 2 
and Its Applications to Stokes Problem. 

F I L I P P O  GAZZOLA (*) 

SUNTO - La scomposizione di Helmholtz-Weyl dello spazio L 2 6 particolarmente adatta 
allo studio delle soluzioni del problema di Stokes. Si stabiliscono le principali pro- 
prietfi della scomposizione e le loro applicazioni al problema di Stokes: opportune 
condizioni di bordo consentono di semplificare il problema; le tecniche utilizzate con- 
sentono anche lo studio di due problemi di tipo Stokes. 

ABSTRACT - The Helmholtz-Weyl decomposition of the space L 2 is strictly related with 
the solutions of Stokes problem. We state the main properties of this decomposition 
and we apply them to Stokes problem: suitable boundary conditions reduce its sol- 
ution to simpler problems; the techniques involved also allow to solve two Stokes- 
type problems. 

1.  - I n t r o d u c t i o n .  

In this paper  we show how the orthogonal decomposition of the Hilbert  
space L 2 introduced by Helmholtz and Weyl [9,18] can be employed to solve 
Stokes and some related problems for a certain class of boundary conditions. 
I f  t~ is some region of the space and/~ is a positive constant, Stokes problem 

(*) Indirizzo dell'autore: Dipartimento di Scienze T.A., via Cavour 84, 15100 Ales- 
sandria, Italy. 
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consists in determining u and p satisfying 

- t t A u + V p = f  in f2, 

V.u- -O in f~, 

for a given function f. In the sequel $9 represents an open connected bounded 
set of R ~ with boundary af2 e C8; in some cases less regularity is sufficient 
but we will not go deep into this analysis. Bold capital letters (L 2, H 1 , ...) 
represent functional spaces of vector functions and usual capital letters 
(L 2, H i , ...) represent spaces of scalar functions: we set L 2 := L 2 (f2), ... and 
we specify the set only when it is not f2. With H m we denote the Hilbertian 
Sobolev spaces, D denotes the space of C ~ functions with compact support in 
f2 and D '  its dual space (space of distributions). We consider the spaces 

G 1 :----- { f e L 2 ;  V . f = 0 ,  y~ f=0} ,  G2 := { f eL2;  V . f = 0 ,  ::lgeH 1, f = V g } ,  

G8:={ feL2;  3 g e H  1, f = V g } ,  V : = { f e H 1 ;  V . f = 0 } ,  

E : = { f e L 2 ;  V . f eL2} ,  Eo:= { f e E ;  y n f = 0 } ,  M : = { f e H 1 ;  AfeL2},  

where ?n denotes the normal trace operator; y~ is linear continuous and sur- 
jective from E onto H-1/2 (at)) and its kernel is Eo. Obviously V r G1 r Eo and 
G1 (9 G2 r E; the spaces V and E are Hilbert spaces when endowed with the 
scalar products (u, V)r := (Vu, Vv)L2 and (u, v)E = (u, v)L~ + (V.u, V-V)L 2. It 
is well-known (see [9, 15, 18]) that L 2 = G1 (9 G2 (9 G8 and that the spaces Gi 
(i = 1, 2, 3) are mutually orthogonal: we denote by Pi (i = 1, 2, 3) the orthog- 
onal projectors of L 2 onto G~ ; we also refer to [4, 10] for a similar decomposi- 
tion of L p for all p e (1, oo ). The decomposition of a function f e  L 2 following 
G1 (9 G2 (9 G3 is determined by solving the homogeneous Dirichlet problem 
for a Poisson equation and a Neumann problem for Laplace equation: let 
f e  L 2 and denote ~0 = V . f  (~ e H-1), let ~ be the unique solution of 

(1) l A~0 = ~0 in ~2, 
[ eH~ , 

then P~ f = V~f; let 0 be the unique solution (up to the addition of constants) 
of the problem 

f 
AO=O in D ,  

(2) c~O 
-~n = ~'~(f - Paf) on 3Y2, 

then P2f  = V0. Since V ' ( f  - Pa f )=  0, then f - P  s f e E  and ?n( f  - Paf) 
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makes sense; using the generalized Stokes formula 

(3) W e  E Vg E H 1 (f, Vg)L'~ + (V .f, g)L ~ = (~?nf, ~g) 

($ is the usual trace operator and (., .) is the duality between H 1/2 (3t9) and 
H 1/2 ( ~ ) ) ,  one can verify that the compatibility condition for (2) is fulfilled; 
finally, we have P1 f = f -  P2 f -  P8 f. 

In this paper we establish some properties of the decomposition L 2= 
= @i Gi and we apply them to solve Stokes problem with nonstandard bound- 
ary conditions; we point out that a somehow similar device has been used for 
Boussinesq equations in [13, 17] by considering a decomposition of the space 
of solenoidal periodic functions. 

In Section 2 we study the behaviour of the spaces Gi when transformed 
by the Laplace operator and by the corresponding Green operator relative to 
the homogeneous Dirichlet problem. The proofs of the results in this section 
are quite simple but the statements are useful tools in the study of Stokes 
problem and are widely used in the sequel of the paper. 

In Section 3 we apply these results to Stokes equations for incompress- 
ible fluids: we define independent motions as the motions for which Stokes 
problem can be splitted into two different subproblems, the first one contain- 
ing only the velocity u and the second one containing only the pressure p; 
this means that for independent motions we can modify independently the 
values of the velocity u and of the pressure p by changing in a suitable way 
the components off. We study the problem with the three kinds of boundary 
conditions introduced by Girault [8] (see also [1]) and we show that with 
these boundary conditions the motion becomes independent: it is therefore 
possible to project the equation onto the spaces Gi and to decompose it in two 
subproblems; this leads to the exact value of p and to a very simple equation 
for u. Girault [8] shows that these boundary conditions are extremely useful 
for numerical approximations; we use her existence and uniqueness results 
in Theorems 3.1, 3.2 and 3.3 to obtain precise informations about the solution. 
Stokes problem becomes then easier to handle: it suffices to determine the 
components of f by solving (1) and (2) to obtain the exact value of the pres- 
sure p and to solve a system of four linear PDtE's to determine the three com- 
ponents of the velocity u. 

In Section 4, as further applications of Helmholtz-Weyl decomposition, 
we consider two modifications of the classical Stokes problem. These prob- 
lems ,,approximate, in some sense the Stokes problem for compressible flow 
(see e.g. [16]) and the Stokes problem with a pressure-dependent viscosity 
(see [6,12]). 



98 FILIPPO GAZZOLA 

Acknowledgement. The author is grateful to the referee for his useful 
suggestions. 

2. - S o m e  features  o f  Helmhol tz -Weyl  decompos i t ion .  

2.1. Basic properties of the spaces Gi. In this section we state some prop- 
erties of the functional spaces defined in the introduction; since the spaces Gi 
are mutually orthogonal and G1 @ G�9 (~ Ga = L e we immediately infer that 
the spaces Gi are closed subspaces of L e. As direct consequences of the def'mi- 
tions of G~ and G3 we obtain 

PROPOSITION 2.1. I f  f � 9  G2 then f is harmonic in Y2; i f  f �9 G3 and V . f =  0 
then f -- O. 

Let us determine the intersection of Gi with the spaces E and E0: 

PROPOSITION 2.2. There results: 

(i) G2 n Eo = { 0 }, 

(ii) G 3 N E =  { f � 9  3 g � 9  2, f - -  Vg}, 

(ill) G3NEo= { feL2;  3 g � 9  f =  Vg}. 

PROOF. (i) If f � 9  Ge n E0 then V ' f=  0, 7 , f  = 0 and there exists g �9 H 1 
such that f = Vg; therefore, d g =  0 in ~9 and ~g/~n = 0 on ~t~ which yields 
g = constant and f -  0. 

(ii) If  f � 9  Ga n E then there exists g �9 H 1 such that f =  Vg and Ag �9 L2; 
hence (see [7]), g �9 Ho 1 n H e. The converse inclusion { f � 9  L 2 ; 3g e Ho 1 n H 2, 
f = Vg } g G3 n E is trivial. 

(iii) If f � 9  G3 n E0 then by (ii) we know that there exists g e H 1 n H 2 
such that f =  Vg; moreover, 9glen = 7 n f  = 0 and the first inclusion follows. 
The converse inclusion is trivial. �9 

From the previous result we infer the following 

PROPOSITION 2.3. Let Ho 1/2(~r~) : =  {~b �9 H-1/2(~Q); <r 1> = 0}; then 
7~ is an isomorphism from G2 onto H0-1/e(3t9). 

PROOF. Since GecE we have ~n(G2)_cH-1/2(3Y2); hence, by (3) (with 
f eG2  and g - l )  we obtain 7n(G2)c_H~-I/2(~Y2). Next, we claim that 
Vr  �9 Hol/2(3~9) 3 ! f � 9  Ge such that ~ / n f  = ~; let q be the unique (up to the 
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addition of constants) solution of 

Aq=O in t2, 

o3~qn = q) on 3f2 : 

then q �9 H I. Set f =  Vq, then f e  G2 and 7 n f  = q) and the existence of f is 
proved. Uniqueness follows from the fact that ker ~n = E0 and from Proposi- 
tion 2.2(i). �9 

We now study the behaviour of the Laplacian over G1 and Gs: the next 
proposition states that if f � 9  M has zero component on G1 (respectively G3) 
then also its Laplacian does. 

PROPOSITION 2.4. Let i e  {1, 3} and let f e M  A (Gi(~G2); then 
A f � 9  a~ ~ G2. 

PROOF. If f e M n G 1 ,  then V . ( A f ) = A ( V . f ) = O  and AfeGI (~G 2. If 
f � 9  M N G3, then there exists g �9 Ho 1 N H 2 such that A f =  A(Vg) = V(Ag); 
hence, Ag ~ H 1 and A f � 9  G2 �9 G3. The results now follow directly from Propo- 
sition 2.1. �9 

We improve this result with a necessary and sufficient condition for a 
function f E M  to have its Laplacian in G1 $ Ge: its divergence must be an 
harmonic function. 

PROPOSITION 2.5. Let f e M and q~ = V.fi  then A f  �9 G1 (~ G2 i f  and only i f  
Aq~ = O. 

PROOF. We have A f � 9  = 0r = 0r = 0. �9 

We wish to characterize the harmonic functions in G1 and G8 ; for G1 we re- 
fer to Proposition 3.6 while for Gs (see also Proposition 4.1) we prove 

PROPOSITION. 2.6. Let f e  M N G3; then A f  = 0 i f  and only i f  V . f  = k 
(k �9 R). 

PROOF. If  f e M  N Gs, then there exists g e H 1 A H 2 such that Vg =fi 
hence, Af  = 0r = 0r = Or = k c ~ V . f =  k. �9 

REMARKS. If  the dimension is n = i we have G1 = {0}, G2 - R and G8 = 

= { f e  L 2 ; ~ f =  0}. If n = 3 and if D r R 8 is connected but not simply con- 
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nected the space G1 can be decomposed as direct sum of G~ = ker (curl) O G1 
and its orthogonal complement G~ in G~ ; if N denotes the order of connec- 
tion of ~2 it can be proved (see [3]) that  dim (G~)= N: therefore, if ~ is 
simply connected then G1 = G~, V A (H 1 ) = V A (H 1 A G1) -- G1 (~ G2 and 
[V A (H1)] • = G3. 

2.2. The homogeneous Dirichlet problem for Poisson equation. In this 
section we consider the problem 

(4) I Au = f  in ~ ( f ~ L 2 ) ,  

( u = 0 on 8Q,  

and we study its decomposition following $ i  Gi; consider Green's operator F 
relative to (4): F maps L 2 onto H 2 N H 1 and F ( f )  = u = unique solution of (4). 
With our assumption on 8~2, we have Piu e H 2 (see [15] p. 18); a first conse- 
quence of this fact is 

PROPOSITION 2.7. For all u e H 1 we have ~ V ' ( P a u ) =  0. 
Q 

PROOF. Since P i u e H  1 (i = 1, 2, 3), from the divergence Theorem we 
get 

I V ' ( P l U  + P2u + Pau)= f 7 , ( u )  = 0: 
Q 8Q 

the result follows since the functions in G 1 (~ G 2 are solenoidal. �9 

In problem (4) we have u e H 2 N Ho 1 and therefore Jlul~ = - f u . A u ,  

that  is, the only function u orthogonal (in L ~) to its Laplacian is the trivial 
function u-= 0; we have so proved 

PROPOSITION 2.8. Let i e { 1, 3} and let u ~ 0 satisfy u ~ t l  2 A 11~ A Gi; 
then Au~tG2. Moreover, i f  i ~ j ,  i # k, j # k then F(Gi) ('l (Gj(~Gk) = {0} 
and F(Gi @ Gj ) n Gk = { 0 }. 

Compare the first s ta tement  with Proposition 2.4: we already know that  if 
u e 112 n Gi (i e { 1, 3}) then Au e G~ @ Gi; if in addition u e H i  then PiAu 
cannot vanish unless u = 0. 

We now establish two properties of the space G2: 

PROPOSITION 2.9. (i) There results F(L 2) A G2 = {0}. 

(iN) I f  i e  {1, 2, 3}, then [P~A - A P i ] ( H 2 ) c G 2 .  
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PROOF. (i) I f  U �9 F(L e) AGe,  then u �9 H 1 N G2 ; hence, u - 0 by Proposi- 
tion 2.2(i). 

(ii) Let  f � 9  H e ; if i = 2 the result  follows directly from Proposition 2.1. 
If  i = 1, by Proposition 2.4 we have A P f f � 9  G1 @ Ge, hence 

(5) [P1 A - A P 1 ] f  �9 G1 ~ Ge. 

Since P i f � 9  H e, P 1 A f =  P1 (APf f )  by Propositions 2.1 and 2.4. Furthermore,  

for all VleG1 we have [ A P l f ' v l = [ P l ( z l P f f ) ' V l ,  hence [ [ P I A f -  
J 

- A P l f ]  "vl = O, which, together with (5), yields [P1A - AP1 I f � 9  Ge. The re- 
sult follows in the same fashion when i = 3. �9 

We now study the behaviour of the operator F on the spaces G~ with re- 
spect to vanishing components: 

PROPOSITION 2.10. Let u �9 F(Ge) and u ~ 0; then Peu ~ 0 and Psu  ~ O. 

PROOF. Le t  u �9 F(G2): by Proposition 2.8 we have P2u ~ 0; by contradic- 
tion, if Pau = 0, we have 7 , ( u )  = 7n(Pl  U) + 7n(Peu),  hence, 7~(Peu) = 0 
which contradicts Proposition 2.2(i). �9 

PROPOSITION 2.11. Let f e  G1 be such that F ( f )  qt G~ ; then Pi [F(f)]  ~ 0 Vi. 

PROOF. Le t  u = F( f ) ,  then P l u  ~ 0 by Proposition 2.8: we claim that  
P2u = O ~  Psu  = O. I f  Psu  = 0 then 7n(P2u) = ~, n(u) - 7 . ( P l U )  = 0; hence, 
P2u = 0 by Proposition 2.2(i). Conversely, let P2u = 0; we know that  there 
exists g �9 H a N HI  such that  P3u = Vg. As f =  A(PlU + Psu),  we have 
V.(zIPsu) = V . ( f -  APlU) = 0; therefore, A2g = A(V'P3u)  = 0. Moreover, 
7~(Pau) = ~,,(u) - y , ( P l  u) = 0: hence, ~g/~n = 0 on af2. We then obtain the 
problem 

A2g = 0 in ~ ,  

8g 0 on 8t2, 
~n 

g = 0 on at2,  

which yields g = 0, that  is, Ps u = 0. �9 

If  u �9 H 2 N Ha  we know that  Au �9 L 2 ; we can thus decompose Au: 
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PROPOSITION 2.12. For all u � 9  2 • H~ there exist Vl, v2, v 3 � 9  2 A H01 
(uniquely determined) such that Avi �9 Gi and u = ~, vi. 

i 

PROOF. We k n  o~th a tPiAu�9 2,3) 

Avi = PiAu in t2, 

v i e H 2 N H l :  

these problems have a unique solution. �9 

REMARK. If U �9 H z N V, then Au �9 (Gi (3 G2) r E and we can define 
r~(Au)�9 with the notations of Proposition 2.12, we have 
r~(zJu) = ~(Av2 + Ava) and ~,(Av~) = 0. 

The next result states that a function f � 9  G1 can be seen as the projection 
(over G1) of the Laplacian of a function in H 2 A GI: 

PROPOSITION. 2.13. For all f � 9  Gi there exists v � 9  G~ such that 
P1Av =f. 

PROOF. If u = F ( f ) ,  then ~ A P i u = A u = f  with P i u e H 2 A G i ;  as 
i 

APeu = 0 by Proposition 2.1 and AP3u �9 G2 @ G3 by Proposition 2.4, the re- 
sult follows by setting v = P~ u. �9 

In Section 3 we refine this result: Proposition 3.2 restricts the class of v to 
get uniqueness, Propositions 3.5 and 3.8 yield a function v E G1 N H 2 for 
which Av = f  (without taking its projection). 

3. - I n d e p e n d e n t  m o t i o n s  for  S t o k e s  problem.  

3.1. The classical Stokes problem. Stokes equations represent the sta- 
tionary linearized form of Navier-Stokes equations that appear in fluid-me- 
chanics problems for incompressible fluids, see [5,10,15]. Let ~9 r R a be open 
and bounded with 8t~ �9 C a, let f � 9  L 2 be a given vector function in ~9 (the ex- 
ternal force applied to the fluid): the unknowns are the vector function u = 
= (ul, u~, u8 ) and the scalar function p reprdsenting respectively the velocity 
and the pressure of the fluid; u and p satisfy (in a suitable sense) the 
system 

{ - t tAu + Vp = f  in ~9, 

(6) V.u = 0 in ~ ,  
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where tt > 0 is the viscosity of the fluid. From the divergence Theorem and 
from the second of (6) we have a necessary condition for the solvability of (6): 

($n(U), 1) = O. 
In the sequel we will also deal with the problem (~0 e H i) 

{ - / ~ A u + V p = f  in tg, 

(7) V-u = cp in Y2 ; 

in this case the compatibility condition becomes 

(7~(u), 1) = I cf(x) dx .  (8) 
/ /  

The aim of this section is to study under which conditions (6) can be splitted 
into two different problems for u and p; in these cases we say that the motion 
of the fluid is independent. The separation of the unknown functions u and p 
is useful for numerical methods: in [2] Stokes problem (with homogeneous 
Dirichlet condition for u) is divided into two different Dirichlet problems for 
u and p and this separation allows the introduction of a new numerical ap- 
proach; similar results are also obtained in [1, 8] for more general boundary 
conditions. 

By Propositions 2.1 and 2.4 we can decompose the first of (6) and 

obtain 

(9) - t t P l d u  = P l f  , - t t P 2 d u  + P2Vp = P f f  , PsVp = Psf;  

to get (6) we must add the condition V-u = 0. In particular, the previous de- 
composition states that if/)3 f = 0 (i.e. V . f  = 0) then Vp e G2 and, by Proposi- 
tion 2.1, we infer 

PROPOSITION 3.1. Let f e G 1 0 ~2; i f  there exists (u, p) solving (6) then p 
is an harmonic funct ion in tO. 

Let us first consider the non-slip boundary condition 

(10) u = 0 on 9t) ; 

it is well-known tha t  (6) (10) has a unique solution (uniqueness for p is to be 
intended up to the addition of a constant): if f e  L 2, there exists a unique 
(u, p) e (H e A V) • (H 1/R) satisfying (6) almost everywhere in Q and (10) 
in the trace Theorem sense. In particular, from the variational formulation of 
(6) (10) (see [11]) we infer 

PROPOSITION 3.2. For all f � 9  G1 there exists a unique u �9 H 2 A V such 

that P1Au = f. 
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3.2. Independent and rotovorticous motions. In this section we deter- 
mine sufficient conditions that allow to split (6) in two different problems for 
u and p. 

DEFINITION 3.1. We say that the motion of a f luid is independent i f  it is 
possible to split the force f in two components, the f irst  one acting only on u 
and the second one acting only on p. 

As already underlined in the introduction, the main feature of indepen- 
dent motions is that we can modify the velocity u and the pressure p of the 
fluid independently from each other by changing in a suitable way the com- 
ponents of the external force f. AS particular components of the force f we 
consider its projections onto the spaces Gi: in this case independent motions 
seem to be strictly related with the boundary conditions for problem (6); in 
Section 3.3 we will give three examples of boundary conditions which gener- 
ate independent motions. A first kind of independent motions are the mo- 
tions that we call rotovorticous motions because a condition on the curl of the 
vorticity is required. The vorticity vector w is defined by 

co = V A u ;  

if in some region of Q we have w = 0 the motion is of pure deformation and is 
then called irrotational. 

DEFINITION 3.2. We say that a motion is rotovorticous i f  V A eo �9 Eo. 

Making use of Definitions 3.1 and 3.2, when we deal with the more general 
problem (7) we will speak about independent and rotovorticous solutions (in- 
stead of motions). As particular rotovorticous motions (solutions) we have ir- 
rotational motions, motions with constant vorticity vector and motions for 
which w �9 D. According to the definition of E0, rotovorticous solutions satis- 
fy V A o ) � 9  2, V-(V/ko)) e L  2 and 3{~pn} c D  such that ~ - - ~ V A w  in E. 
The first condition is fttlfilled when Au �9 L 2 and r �9 H 1 since V A w = Vr + 
+ Au, the second condition is always fulfilled since V. (V A ~o) = 0; for the third 
condition we know that there exists { ~0 ~ } c D such that ~ ~ --) V A co in L 2 (D 
is dense in L 2) and since the derivation operator is continuous in D'  we also 
have V. yJ~ --. V. (V A w) = 0 in D '  but we do not know if this convergence is 
also in the strong topology of L 2. 

Note also that from (3) (with g = 1, f = V A to) we have 

(11) u e H 2 ~ ( r ~ ( V  A w), 1>= 0; 

thus, if f � 9  L 2 and ~ �9 H 1, we have a motion for which (11) holds, while only 
for rotovorticous motions the stronger condition 7~ (V A oJ) = 0 is true. Since 
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V- (V/~ co) = 0, rotovorticous solutions satisfy V/k w �9 G1 while the other sol- 
utions satisfy V/~ w �9 G1 �9 G2. The main simplification due to the rotovorti- 
cous property of the solution of problem (7) (and (6)) is illustrated by the 
following 

PROPOSITION 3.3. I f  q~ e M and Au e L 2, a solution of (7) is rotovorticous 
i f  and only i f  7~(Au) = ~q~/3n. 

PROOF. We have ~ �9 Mr Vr �9 E and 7n (Au) = 7"(V A w) + 74 (V~) = 
= ~ / a n  �9 H-1/2 (~r~). �9 

3.3. Boundary conditions generating independent motions. In this sec- 
tion we deal with problem (6) while problem (7) will be discussed in Section 
4.1; we assume that f e  L 2. The boundary conditions that can be added to (6) 
are of different kind according to the physical problem considered. For prob- 
lem (6) we always have Au e G1 @ G2 and Vp e G2 (~ G3. A possible kind of in- 
dependent motion is then found when P2du or P2Vp vanish; the next result 
relates this remark with rotovorticous motions: 

PROPOSITION 3.4. The motion of an incompressible fluid (as described 
by (6)) is rotovorticous i f  and only i f  P2Au = 0 (i.e. P2Vp = P2f). 

PROOF. Since V.u = 0 we have V A w = - A u  and the result follows 
from Proposition 3.3. �9 

We know that there exists g2 e H 1 and gs E H~ such that Vgi = P J  (i = 
= 2, 3); let 

(12) g = g2 + g3, 

in this section gi and g will always represent these functions. 
A first example where the motion becomes rotovorticous is when to equa- 

tions (6) we associate the boundary conditions 

(13) 7n(U) = 7n(w) = 7n(V A (o) = 0; 

with these conditions we obtain an improvement of a result in [8]: we charac- 
terize the solution by means of the components P i f  of f. 

THEOREM 3.1. There exists a unique solution (u, p) e (H 2 N G1) x 
x (H 1/R) of (6) with boundary conditions (13); this unique solution is given 
by (g as in (12), k e R) 

(14) p(x) = g(x) + k 
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and by the unique solution u of the problem 

f 1 Au . . . .  P l f  

V . u  =O in ~2, 

(13). 

in ~2, 

PROOF. Existence and uniqueness of a solution ( u , p ) � 9  • (H1 /R)  
such that w �9 E is proved in [8]. Now, use twice Proposition 1.4 in [3] to ob- 
tain u � 9  thus Au EL 2 and (6) holds almost everywhere; moreover, 
V/~ w �9 E and (13) is defined in the trace Theorem sense. By (13) and Propo- 
sition 3.4, P2Au = 0 and u is solution of the above problem; by (9) we have 
Vp =/)2 f + P8 f and the result follows. �9 

REMARK. If we take f � 9  E we have P s j = f  - P1 f -  P 2 f � 9  E and there- 
fore p �9 M. 

From Theorem 3.1 we infer directly 

PROPOSITION 3.5. For all f � 9  G1 there exists a unique u �9 H 2 N G1 with 
V A u e G1 and V A (V A u) e G 1 such that f = Au. 

Another consequence of Theorem 3.1 is a characterization of the nontriv- 
ial harmonic functions of M A GI: at least one between P2(V A f )  and 
P2[V A (V A f)]  must be different from 0. 

PROPOSITION 3.6. Let f e M N G 1 be such that A f  = 0; i f  V A f e  G1 and 
V A (V A f )  �9 GI, then f -  O. 

PROOF. By the assumptions we obtain ~ ( V  A f )  = ~ [ V  A (V A f ) ]  = 0; 
hence, f -  0 by the uniqueness result of Theorem 3.1. �9 

A second example of boundary conditions generating rotovorticous mo- 
tions is 

(15) w a n = 0  on ~ 9 ,  ~ ( u ) = O .  

Conditions (15) approximate in some sense the classical free-slip (stress-free) 
boundary conditions: in particular, these conditions coincide in the regions of 
the boundary where the curvature is zero. Note also that (13) and (15) are ge- 
ometrically complementary: the former says that the vorticity vector w lies 
on the tangent plane to ~ while the latter says that w is orthogonal to 
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The following existence and uniqueness result holds: 

THEOREM 3.2. There exists a unique solution (u, p) �9 (M A G1 ) • 
X (H 1/R) of(6) (15) given by (14) and by the unique solution u (almost evary- 
where) of the problem 

1 
zlu . . . .  P l f  

tt 

V - u = 0  in Q,  

(15). 

/ n~9 ,  

PROOF. Let U : = { v � 9  V A v � 9  it is proved in[8] that there 
exists a unique solution (u, p) �9 U • H 1 such that 

Vp. Vq = j f "  Vq Yq �9 H 1 ; 

h e m e ,  Vp and fhave  the same component over G2 �9 Gs. Applying Proposi- 

tion 1.4 in [3] we have u �9 H 1 ; note that ~(V A u). (V A v) = - (Au, v) for all 
Q 

v �9 V so that u �9 M by a density argument and the result follows. �9 

A direct consequence of these results is a refinement of Proposition 3.1: 

PROPOSITION 3.7. Assume either (13) or (15); then 

(i) i f  f � 9  G1 the function p solving (6) is a constant function in t~, 

(ii) i f  f � 9  G1 �9 G2 the solution p of (6) is an harmonic function in Y2. 

Another corollary of Theorem 3.2 is 

PROPOSITION 3.8. For all f � 9  G1 there exists a unique u �9 M A G1 with 
(V A u) A n = 0 on 3Q such that f = Au. 

REMARK. For all the boundary conditions so far considered (i.e. (10), (13) 
and (15)) the following equivalence holds: P f f  = 0 r u =- O. 

Next we study another kind of independent motion; we deal with the case 
where/)2 Vp = 0: to this aim we consider the boundary conditions 

(16) u A n = 0 on ~ 9 ,  ~ p  = ;t 0~ �9 R ) .  
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Conditions (16) are available, for instance, in the following inflow-outflow 
problem: consider a rigid wall separating two basins and imagine that a fluid 
goes from one basin to the other through a circular hole; making a section in 
the direction of the wall, the situation can be described by the following pic- 
ture (~Q is the dotted line). 

RIGID I 
WALL ] OUTGOING 

F L o w l N G O I N G ~  FLOW 

I ) ) 

./ / 

We also refer to [1] where conditions (16) are taken to describe flows in a 
network of pipes. Note also that (16) requires u to be normal to 8D while (13) 
and (15) require u to be tangent to 8Q: for problem (6) (16) we obviously do not 
have u �9 G1 unless yu = 0. The following result holds: 

THEOREM 3.3. There exists a unique solution (u, p) �9 M • H 1 of problem 
(6) (16); i f  g3 is as in (12) and ~ is as in (16) this unique solution is given 
by 

p(x) = g3 (x) + 

and by the unique solution u (almost everywhere) of the problem 

1 
Au . . . .  (P l f  + P2f) 

it 

V . u = O  in ~ ,  

u A n = O  on ~t~. 

in Y2, 

PROOF. Existence, uniqueness and regularity are proved in[l,8]; we 
have Vp e G2 ~ Gs, but Vp = V(p - 4) and (p - )~) e Ho 1 , thus Vp e G3 (P2VP = 
= 0) which yields Vp = P~fi from (9) we have Au = - 1 l i t .  (P l f+  P2 f )  since 
- i tP2Au = P2f. " 
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To conclude this section we remark  that  Theorems 3.1, 3.2 and 3.3 allow to 
determine the exact value of the pressure  p when (1) and (2) are solved. More- 
over, for u we have a linear differential system of four equations to determine 
its three components: for this system we do not wonder about its solvability 
because of the above theorems. The solution of Stokes problem for indepen- 
dent motions is then reduced to the solution of three simpler problems; it 
would be interest ing to obtain similar results for the non-slip boundary condi- 
tion (10). 

4. - Two Stokes- type  problems 

4.1. The prob lem w i th  V . u  = q~. In this section we consider problem (7) 
with f � 9  L 2, ~ �9 M; this problem is not  Stokes problem for compressible flows 
but  it can be used to prove some related results (see e.g. [16]). We first prove 
that  the divergence operator  is an isomorphism from H e A G8 onto H 1 : 

PROPOSITION 4.1. Let  ~ � 9  1, t hen  there exists  a u n i q u e  v �9 ( H 2 N G 3 )  
such that  

(17) V . v = c p .  

PROOF. Le t  F be the unique solution of the problem 

{ A W = ~  in ~2, 

y~ = 0 on a~2 : 

then ~ �9 H ] N H a (see [7]). Now let v = V~, then v �9 H 2 A G3 and V -v = AW = 
= ~ and existence is proved. To prove uniqueness, let v '  �9 G3 be another  solution 
of (17), then v - v '  �9 H 2 N G3 ; moreover,  V- (v - v '  ) = 0: by Proposition 2.1 
we obtain v = v ' .  �9 

From now on, v denotes the unique function defined by (17): note that  A v  = 

= V~0; hence, if we set w = u - v and if u satisfies (7) then w satisfies 

(18) { -/~Aw + V ( p - / ~ 0 )  = f  in ~2, 

V . w = O in ~2 . 

Using the results  of Section 3.3 we can determine boundary conditions gener- 
ating independent  solutions for (7): if ~0 e M, we consider v given by (17) and 
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the boundary conditions 

(19) ~]n(U) ---- ~ n ( V ) ,  ~n ((~0) ---- ~ n ( V  A (1)) ~- 0 .  

We can prove 

THEOREM 4.1. Let q~ �9 M, f � 9  L 2 and g �9 H 1 be such that Vg = P j  + PJ .  
Then there exists a unique solution (u, p) �9 H 2 x (H 1/R) of (7), (19) given 

by 

p(x) = ~q~(x) + g(x) + k (k �9 R) 

and by the unique solution u of the problem 

f 1 A u  . . . .  P l f  + Vq) 
H 

V . u  = cf in 

(19), 

in t?, 

the equations being satisfied almost everywhere in f2. 

PROOF. As v �9 H 2 (7 Gs we have V A v = V A (V A v) = 0; let w = u - v, 
then to (18) we must add the boundary conditions 

~n(w) = y , ( V A w )  = yn[VA (YAw)]  = 0 

which, by Theorem 3.1 yield a unique solution (w, p) given by p(x) = ttqg(x) + 
+ g(x) + k and 

f 1 

Aw . . . .  P l f  in tg, 
tt 

V . u = O  in f2, 

yn(w) = ~'n(V Aw)  = yn[VA ( V A T ) ]  = 0, 

and the result is proved. �9 

Reasoning as for Theorem 4.1 we can prove 

THEOREM 4.2. Let q~ �9 M, let g and v have the same meaning as in Theo- 
rem 4.1; then there exists a unique solution (u, p) �9 M x (H 1/R) of (7) with 
boundary conditions 

y,~(u) = y , ( v ) ,  oJ A n = 0 on ~Q. 
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This unique solution is given by (k �9 R) 

p(x) =/~r + g(x) + k 

and by the unique solution u (almost everywhere) of the problem 

f 1 Au . . . .  P l f  + Vq~ in Q,  

V . u = ~  in ~ ,  

?n(U) = yn(V), w A n = O on ~ .  

Note that by (17) the condition (8) is satisfied for both Theorems 4.1 and 
4.2. 

In a completely similar way we can also prove the analogue of Theorem 3.3 
and find independent solutions of (7) which are not rotovorticous: 

THEOREM 4.3. Let q~ �9 M, let g8 �9 H~ be such that P3 f = Vgs and let v be as 
in (17); then there exists a unique solution (u, p) �9 M x H 1 of(7) with bound- 
ary conditions 

y p = 2  +/~.?q~ ( ; t � 9  u A n = v A n  on ~ .  

This unique solution is given by 

p(x) =/~9(x) + g3 (x) + 2 

and by the unique solution u (almost everywhere) of 

Au . . . .  ( P l f  + Pa#) + VqJ in D,  

V .u  =cf in D,  

u A n = v A n on 8~2. 

4.2. The problem with/~ = l~(p). In this section we modify slightly problem 
(6) (10) and we solve the nonlinear problem 

f -/~(p)zJu + Vp = f  in ~2, V . u = O  in ~2, 

(20) u = 0 on ~ ,  

3P = f . n  on 3~2 

where n represents the unit outer normal on 3~2:/~ is no longer a constant but it 
is now supposed to depend on p. The Neumann condition states that  the exter- 
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nal force f applied at the boundary determines the variation of the pressure p; 
in fact, by applying the normal trace operator 7n to the first of (20) as in [1], we 
see that this condition ,,forces, problem (20) for which we cannot expect in 
general the existence of a solution: the solution needs also to satisfy 7~ (Au) = 
= 0. The first overdetermined problem was solved by Serrin [14]: he proved that 
if certain problems in potential theory admit a solution u, then the domain 
must be a ball and u is radially symmetric. Here we do not wonder about the 
properties of t~ but we give a necessary condition on the da taf for  problem (20) 
to have a solution; a sufficient condition to obtain a (trivial) solution of (20) will 
also be given in this section. 

Note also that system (20) does not represent Stokes equations with a 
pressure-dependent viscosity: indeed, the first equation should be derived 
from - V. [tt(p)(Vu + VTu)] + Vp = f ( see  [12]), where V T u  denotes the trans- 
posed tensor of Vu. However, if we suppose that the dependence tt = tt(p) is 
not very important (that is, i f /~ ' (p)  is ,,small-) we can neglect the term 
- ~ '  (p)(Vu + V T u ) V p  and obtain the first of (20). 

To solve problem (20) we assume that ~9 c_ R ~ is open and bounded with 
boundary ~9  �9 C a and that 

(21) 

tt is absolutely continuous, 

infe Itt(x) l > 0 

i t ' (x) keeps constant sign in R ,  

tt �9 W 1' ~ (R), 

(22) f � 9  E ,  

(23) the mean value ~ of p over t9 is known. 

In the sequel we denote f l  = P1 f ,  f '  = P2 f + P J  and with h a function such 
that Vh = f ' ;  from (22) we infer that f '  � 9  and by Proposition 2.2(ii), 
h � 9  

If we set q = p - h, O(q) = tt(q + h) system (20) becomes 

f 
- O(q) z lu  + Yq  = f l  in ~ ,  

V . u  = O in t~ , 

(24) u = 0 on a ~ ,  

~q 0 on atg, 
3n 

and (23) yields ~ --- (1/1• I) I q = ~ - h where h = ( 1 / I t91 ) I h; moreover, as- 
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sumptions (21) on tt can be ,,translated, into similar assumptions on 0. After 
solving system (24) we shall immediately infer a solution of (20); indeed if 
(u, q) solves the first, (u, q + h) will solve the latter. So, take the divergence 
of the vector equation in (24) to obtain Aq - O' (q)Au.  Vq = 0; from the vector 
equation itself we get A u  = (1/O(q)).  (Vq - j~  ) which, inserted in the previous 
one and in (24), yields the following problem 

(25) 

{ O(q)Aq - O'(q)]Vql 2 + O'(q)f~.Vq = o 

~ = 0 on 3t~.  

We can prove 

in ~2, 

PROPOSITION 4.2. Let (21)-(23) hold; then problem (25) has a unique sol- 
ut ion q e M which is constant in t~ and is given by q(x) - ~. 

PROOF. Let  m be any positive integer, multiply (25) by O~(q) and inte- 
grate over ~9: 

I [Om + 1 (q) •q _ O'(q) 0 m (q) [Vql 2 + O'(q) 0 m (q) fl" Vq] = 0. 

t~ 

Bearing in mind the boundary condition of (25) and integrating by parts we 
get 

f O'(q) O"~(q)[(m + 2)[Vq{ 2 - f ~ - V q ]  = 0 ; 
~J 

if Vq ~ 0, we get a contradiction from the arbitrariness of m and from 
(21). �9 

As a consequence, we obtain 

PROPOSITION 4.3. Let (21)-(23) hold, and assume that (20) has a solution 
(u, p)  with p E M; then p(x)  = -~ + h(x)  = h(x) + ~ - -h. 

We can now go back to problem (20); from Proposition 4.3 we infer that u 
must be the unique solution of the following Dirichlet problem for Poisson's 
equation: 

1 ~ u -  
(26) tt(h + ~ - h) 

u = 0 on ~t~. 

"fl in tg,  
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The problem now is that  the unique solution u of (26) may not be solenoidal; 
hence, we have 

THEOREM 4.4. Assume (21)-(23), then problem (20) has a solution 
(u, p) �9 (H 2 A V) x M i f  and only i f  

1 o o l  
/~(h + ~ - -h) 

In  this case the solution is unique and p is given by Proposition 4.3 while u is 
given by 

1 A) U = F  
~(h + ~ - h) 

From Theorem 4.4 we obtain 

PROPOSITION 4.4. Assume (21)-(23) and suppose that f l  = 0; then prob- 
lem (20) has a unique solution (u, p) given by u---0 and p ( x ) =  h(x) + 
§  

Our last result is a necessary condition (on the data f )  for the existence of a 
solution of problem (20); we know that  f ,  • f '  in the sense of L 2, the necessary 
condition is the much stronger fl  • f '  in almost every point of ~2: 

THEOREM 4.5. Assume (21)-(23). I f  problem (20) has a (unique) solution 
(u, p) e (H 2 N V) x M then fl (x ) . f '  (x) = 0 almost everywhere in s 

PROOF. Taking the divergence of the first of (26) yields 

/~'(h + ~ -  h) 
/~2(h +~__~)  f l ' V h = O  

and with assumptions (21) we get the result. �9 
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