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CRITICAL EXPONENTS
WHICH RELATE EMBEDDING INEQUALITIES
WITH QUASILINEAR ELLIPTIC PROBLEMS
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Abstract. We show that three numbers which are critical for suitable embedding in-
cqualities are also critical for existence results for some m-Laplace quasilinear elliptic
problems with polynomial reaction term.

1. Introduction. In this paper, we show that three critical exponents for suitable
embedding inequalities are related to existence/nonexistence of positive solutions
to some second order quasilinear elliptic problems. The idea of writing this paper
comes from the striking fact that the very same exponents appear in several different
(and apparently unlinked) contexts. Our purpose is precisely to link different kinds
of results and to attempt an explanation for these links. To this end, we also suggest
a number of open problems.
We consider equations of “polynomial m-Laplace” type such as

—Aju = uP~1 or AU = S + uP—! (1)

where 1 < ¢ < p, Ajpu = div(|Vu|™ ?Vu) and the equations are considered either
in the whole R or in a bounded domain 2 C R" combined with suitable boundary
conditions. Here and in the sequel, we assume that

l<m<n.

Throughout the paper, by solution of (1) we mean a W™ weak solution which,
according to well-known regularity results [8, 36], belongs to Cﬁ)’f whenever p < m*
(the Sobolev critical exponent).

2. Sobolev exponent.

2.1. Sobolev inequalities. The critical Sobolev exponent arises from the follow-
ing question in functional analysis. Let Q C R™ be an open domain, which is the
largest ¢ > m such that the embedding WH™(Q2) C L4(f) is continuous? It is
well-known [1] that the answer is ¢ = m* where

N nm

m =

n—m

It is also well-known that the best Sobolev constant
m

[Vull Lm0

S = _—
ue D (2)\{0} ull L ()
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does not depend on the domain 2 and that the infimum on the right hand side of
(2) is achieved only if = R™. In this case, it is achieved by the one-parameter
family of functions (see [35])

n—ain
m

Ug(z) =d[1+ D (dw=|z))7mT)] ™  (d>0), (3)
where d = Ug(0) = ||Uq4||cc and D = D,, ,, = ——2=L— - Clearly, for any a > 0

(,n_WL)nl/(mfl‘)
and any xg € R", the function aUy(z — x¢) is also a positive minimizer for (2). In

fact, the functions of the family (3) solve the equation
—Apu=u™ "1 in R™ . 4)

By combining the results in [4, 20] one has that if m = 2, then the functions in (3)
are the only positive solutions of (4) having maximum at the origin = = 0.

Open Problem 1. Show that the functions in (3) are the only positive solutions
(having maximum at the origin) of (4) also when m # 2. Partial results are obtained
in [7]. O

2.2. Entire solutions. Let us first consider what Ni-Serrin [25] call the normal
case. We study the existence of ground states, namely nonnegative nontrivial radi-
ally symmetric and vanishing at infinity solutions of the equation

“Apu=—ud 4Pt in R™ . (5)

Radial symmetry of smooth positive solutions of (5) has been widely studied.
First, it has been proved in [20] in the case m = 2 under an additional assumption
on the decay at infinity of the solution; subsequently, this assumption was removed
in [32]. This statement was extended to the case 1 < m < 2 in [6]. When m > 2 the
situation is more delicate and radial symmetry of positive solutions of (5) is known
only under the additional assumption that the solution admits a unique critical
point, see [32].

On the other hand, positive solutions to (5) exist only if ¢ > m whileif 1 < g < m
ground states have compact support (a ball). In such case, radially symmetric solu-
tions about different centers and with disjoint supports may be “sticked” together in
order to obtain multibump solutions, see again [32] and references therein. Hence,
it is readily seen that radial symmetry of nonnegative solutions may fail when
l<g<m.

However, all the just recalled results suggest to restrict our attention to radially
symmetric solutions. In this situation, we have

Theorem 1. Assume that 1 < q < p.
(1) If p < m* then (5) admits a unique ground state.
(i) If p > m* then (5) admits no ground states.

References. When p < m*, see [19] (existence) and [31] (uniqueness). When
p > m*, nonexistence follows from a generalized Pohozaev identity [25]. O
Next we turn to what Ni-Serrin [26] call the anomalous case:
—Au=uP! in R™ . (6)
In this case we have the following result:

Theorem 2. Assume that p > 1.
(7) If p < m* then the unique bounded solution of (6) is u = 0.
(#@) If p > m* then (6) admits infinitely many ground state.
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References. For statement (i), see [33] and previous work in [21] for m = 2.
Statement (47) is a particular case of [26, Theorem 6.4]; multiplicity is obtained
thanks to rescaling. O

2.3. Solutions in bounded domains. We consider the problem

—A,u=uP! in Q
u>0 in Q (7)
u=20 on 0f2

where 2 C R" is bounded and p > m. Again, Sobolev exponent is the “borderline”
between existence and nonexistence but this time it is the other way around when
compared to Theorem 2:

Theorem 3. Let Q C R™ be an open bounded domain and let p > m > 1.
(7) If p < m* then (7) has at least a positive solution.
(%) If p > m* and Q is star-shaped, then (7) has no positive solutions.

References. For the existence of a positive solution when p < m*, see [13] where
one also finds references for previous work in the semilinear case m = 2. The
nonexistence statement for p > m* follows from Pohozaev identity [29] when m = 2
and from its extension by Pucci-Serrin [30] when m # 2; in the latter case the
C? regularity of solutions is not the correct framework and a subsequent paper by
Guedda-Veron [22] clarifies this point. O

In statement (i7) the assumption that € is star-shaped is crucial. Indeed, there
are well-known examples of contractible domains for which (7) admits a positive
solution when m = 2 and p > 2*; we refer to [27, 28] for general results and a fairly
complete list of further references.

Open Problem 2. Extend the existence results in [27, 28] to general m # 2. Even
if we believe the very same statements to be true, this is not a simple exercise, it is
a difficult problem strictly related to Open Problem 1. U

Therefore, Theorem 3 seems to emphasize a different behavior for (7) when the
parameter p is above/below the Sobolev exponent m* only when combined with
suitable geometric assumptions on the domain. In fact, independently of the geom-
etry of the (bounded) domain €, there is one big difference between the subcritical
case p < m* and the critical case p = m*. If 1 < p < m*, solutions of (7) may be
sought as critical points of the smooth functional

1 1 m* 1
— m _ = m ,1M Q )
I = [ (vur === [ we i@
We may then consider the Nehari manifold relative to J
N = {ueW,"™(Q), (J'(u),u) =0, u 0} .

Finally, we say that a solution u of (7) is a least energy solution if J(u) = infur J.
Then, we have

Theorem 4. Let Q C R™ be any open bounded domain and let p > m > 1.
(7) If p < m™* then (7) admits a positive least energy solution.
(%) If p=m* then (7) admits no least energy solutions.

References. Statement (i) is essentially proved in [13]; when p < m* the func-
tional J satisfies the Palais-Smale condition and therefore it admits a mountain-pass
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critical point which is a least energy solution. It may be chosen nonnegative since
J(Ju|) = J(u). Finally, it is positive by the maximum principle, see [37]. Statement
(44) is just Proposition 2 in [14]. O

3. Trace exponent.

3.1. Trace inequalities. In order to maintain some analogies with Sobolev expo-
nent, we start again from a problem in functional analysis. Let 2 C R™ be an open
domain with (nonempty) smooth boundary 9Q and let v : W1™(Q) — L4(9Q) be
the trace operator. Which is the largest ¢ > m for which the trace operator is
continuous? It is known [1, Theorem 5.22] that ¢ = my where

m(n —1)

n—m

mr =
In other words, we have the following result:
aC = CQ >0 s H’YUHLWII(BQ) S CHUHWI"”’(Q) Yu € W17m(Q)
and mq is the largest exponent possible.

3.2. The Emden-Fowler inversion. One of the most common tools used to
tackle radially symmetric solutions of quasilinear equations of the kind

—Apu = f(u) (8)

is the so-called Emden-Fowler inversion, see e.g. [23]. Writing (8) in radial coordi-
nates (|z| =r, u = u(r)) and performing the inversion

(n—m)/(m—1)
n—ml
o= (2=17) S u =) ©
the equation (8) becomes the ode
(Iv'™ %) + ™ fly) = 0 (10)

and the trace exponent my appears.

Even if at a first glance this looks very artificial, it has a deep meaning. Indeed,
the change of variables (9) is the most natural one as it switches the origin with
infinity and it “deletes” the first derivative term so that flex points of the solutions
of (10) coincide with the zeros of f. Moreover, as t — 0 (i.e. |z| — oo in (8)), the
differential operator behaves like the reaction term f(u) times a singularity with

the trace exponent. Therefore, this singularity seems to be intrinsic of the operator
A,,-

3.3. Inequalities and equations in unbounded domains. We first consider
weak solutions of the quasilinear elliptic problem
—Au > uPt in R™ (1)
u>0, u#0 in R™ .

By weak solution u of (11) we mean

/ \Vu|™2VuVep > / uP~Lp Vo e CP(R™), ¢>0.
The first result which highlights the importance of the trace exponent is

Theorem 5. Assume that p > 1.
(7) If p < mr, then (11) has no weak solutions u € VVll’m(R").

ocC

(%) If p > mp then (11) has infinitely many solutions.
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References. Statement (7) has been obtained independently and with different
proofs in [24, Theorem 12.1] and in [33, Theorem I|. For statement (i7), it is shown
in [24, p.53] that the functions u(z) = (1 + |z|7/(m~D)A=m)/(P=m) are entire
solutions of (11) provided ¢ is sufficiently small. O

We also have a somehow “dual” statement. Consider the equation

Apu=u"1 inR™\ {0} (12)
together with the “boundary conditions”
lim ||/ D)y () = plm=m)/m ‘ 1|im u(x) =0, (13)

where D = D,, ,, is as in (3). Clearly, (13) implies that u has at 2 = 0 the same
singularity of the fundamental solution of —A,,u = §y. We have

Theorem 6. Assume that g > 1.
(1) If ¢ < my, then (12)-(13) has a unique nonnegative radial solution.
(%) If ¢ > mp then (12)-(13) has no solution.

References. Statement (i) when ¢ = m is proved in [17] while for general ¢ < myp
we refer to [11]. If ¢ < m the solution has compact support while if ¢ > m it is
positive [11]; moreover, if ¢ = m it has exponential decay [18]. Statement (i7) is a
straightforward consequence of [38, Theorem 1.1]. O

3.4. A doubly critical Neumann problem. Let 2 C R™ be a bounded domain
and consider the Neumann problem
A+ umt =gl et in Q
u >0 in §) (14)
=0 onodQ
where o > 0 and m < ¢ < m*. Clearly, (14) admits a constant solution which may
or may not be an “interesting” solution according to the following definition. As in
Section 2.3 we consider the related action functional
1
J(u) |Vul

m*

m 1 m @ q m*
Lm) T EHM L) T 5HU| La() — HuHLm*(Q) )

1
= E‘
the associated Nehari manifold

N ={ueWh™Q), (J'(u),u) =0, u#0},

and we say that a solution u of (14) is a least energy solution if J(u) = infy J.
Then, we have

Theorem 7. Let Q C R” be open and bounded, let a > 0 and let m < g < mrp.

(7) If ¢ < my, then (14) admits a least energy solution for all o > 0.

(%) If m =2, n > 5, ¢ = 27, then there exists ag = () > 0 such that if
a < ag then (14) admits a least energy solution, while if o > o then (14) admits
no least energy solutions.

References. Statement (7) is proved in [39, Theorem 4.3] (case m = 2) and [40]
(m > 1). Statement (i) is proved in [5]. In case (i), the “limit” situation o = ay
is discussed in [5]. O

Open Problem 3. Remove the restriction on the dimension n > 5 in statement
(#). It is known that existence results for semilinear critical growth problems are
different in dimension n = 3 [3], n =4 [16], and n > 5. O
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Open Problem 4. Prove Theorem 7 (i) in the quasilinear case m # 2. This
statement seems difficult to obtain in this case; indeed, when m = 2 one takes
advantage of the fact that 2(27 — 2) = 2* — 2, see [5]. It seems that if m # 2 a
technical obstruction arises [34]. Moreover, one could also study the case mp <
q < m*; we conjecture that in such case least energy solutions do not exist for any
a>0. g

4. Critical remainder exponent.

4.1. Sobolev inequalities with remainder terms. As already mentioned in
Section 2.1, the best Sobolev constant S for the embedding D™ (Q) C L™ (Q) is
independent of the domain 2 C R™ and it is not attained whenever €2 is bounded.
Then, it is natural to inquire if for some ¢ > 1 there exists a constant C = C(£, q) >
0 such that

m m 1,m
[Vl L) + CllullFoe Vu € Wy (9) .
And, if affirmative, which is the largest exponent ¢ such that C(Q,q) > 07
Let us introduce a third (smaller) critical exponent, namely
n(m—1)

mp=————==mp—1;
n—m

Ty = Sl

then, the answer is given by the following

Theorem 8. Letn >m >2— 1. Let Q C R™ be an open bounded domain. Then,

n

for all g € [1,mpg) there exists Cy > 0 such that
[Vl Li) ~ Vu€E W™ (Q) -

Moreover, lim C; =0, where
g—meg

Cy = inf  (IVul — S|ul.) .

flullq=1

References. See [3] for a proof based on the Pohozaev identity in the case m = 2.

A similar proof for general m > 1 may be found in [9], see also [15]. A direct proof

yielding a stronger result which involves weak norms in the case m = 2 is given in

[2]. O
For this reason we call the number mpg the critical remainder exponent.

Open Problem 5. Prove the result in [2] in the W™ setting, namely that for
any bounded domain 2 C R” there exists C' > 0 such that

m m m 1,m
IVullgm @) 2 Sllullfms ) + Cllullfme oy Vu € W™ () .
When repeating the proof in [2] a “wrong” weak norm appears, see [15]. O

Open Problem 6. Remove the assumption m > 2 — % in Theorem 8. We believe
that it holds true for all n > m > 1. |

The critical remainder exponent m g has also a different characterization in terms
of summability of the minimizers for the Sobolev ratio (2):

Theorem 9. Consider the functions Uy of the family (3) and let ¢ > 1. Then
Uq € LYR™) if and only if ¢ > mpg.

References. This is just a simple calculation, see [11]. [l
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4.2. Asymptotic behavior of ground states. A particular interesting behav-
ior is exhibited by the L® norm of ground states to the following equation as p
approaches (from below) the Sobolev exponent m*:

—Apu = —ud ! 4 yP1 in R™ . (15)

By Theorem 1, (15) admits a unique ground state for all 1 < ¢ < p < m* while
it admits no ground states if 1 < ¢ < p = m™. Therefore, it is of some interest to
study the case where p approaches the Sobolev exponent m*.

We quote a result from [11]; as far as we are aware it is the only statement
involving all the three critical exponents:

Theorem 10. For all1 < g < p < m™* let u be the unique ground state of (15).
Then there exist constants . n,q, Bm,ns Ym,n,g > 0 such that

lim  (m* = p)[u(0)]™ "7 = Gmnq if g > mpg
p—m”

. m* — n .

lim L [(0))7™% = B ifa=ma

p—m* |log(m* — p)|

. * ’771*71 .
lim (m —p)[u(O)] T = Ymyn,g qu < mpg .

p—m*
References. See Theorem 2 in [11] and previous work in the “linear” case ¢ = m
in [17, 18]. The constants oy, m,q, Brnns Yim,n.g are explicitly determined in [11] and
it is shown that

im g, = +00 , lim v,,p,q = +00 .
glme qTme

Note that ;f%‘é =m* —q = —— whenever ¢ = mp and this gives “continuity of

the exponents” in the above statement. ]

5. Concluding remarks. All the above listed results show that the three expo-
nents m*, my and mpg which are critical for embedding inequalities are also critical
for existence results for quasilinear equations of the kinds (1). In (1) polynomial
reaction terms are considered and this fact seems to be the key ingredient to in-
troduce LP spaces in the discussion and, subsequently, explanations in terms of
embedding inequalities. It is shown in [10] that when more general reaction terms
are considered, a precise definition of “subcritical” seems not available. However,
it is by now clear that there exists a strict link between embedding inequalities
and quasilinear elliptic problems with power-like reaction terms. What is missing
is a full explanation of this fact. On one hand some embedding inequalities may be
obtained as consequence of suitable minimization problems for constrained function-
als; if the minimum exists, then we have a solution for the Euler-Lagrange equation.
On the other hand, is there a general way to deduce results for equations directly
from embedding inequalities and vice-versa? If affirmative, which is the role of the
domain (bounded/unbounded), of the boundary conditions (Dirichlet/Neumann)?
And which exponent explains which phenomena?

The subsequent steps of the preliminary remarks contained in this paper could be
to try to tackle all these problems from a different point of view. Before wondering
about existence/nonexistence results for (8) one should try to understand a priori
which are the critical exponents and which embedding inequalities are responsible
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of the answer. To this end, a promising model problem is considered in [12]: it
involves an anisotropic quasilinear elliptic operator which fails to possess some of the
typical features of elliptic operators such as regularity theory, maximum principles,
homogeneous eigenvalue problems.
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