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Abstract. We study the positivity preserving property for the Cauchy prob-
lem for the linear fourth order heat equation. Although the complete positivity
preserving property fails, we show that it holds eventually on compact sets.

1. Introduction. For the biharmonic heat equation,

ut + ∆2u = 0 t > 0,

either in R
n or in a bounded smooth domain (then complemented with suitable

boundary conditions) it is known that no positivity preserving of the solution with
respect to the initial datum holds true. In general, one even has to expect instan-
taneous change of sign, see e.g. [2], which is a property of the differential equation
and can be observed independently of a possible choice of boundary data.

On the other hand, there exist bounded domains with boundary conditions such
that the corresponding elliptic first eigenvalue is simple and the first eigenfunction
is of fixed sign and displays a nondegenerate behaviour at the boundary, see [6]
and references therein. In these domains and for each positive initial datum, in
dependence of this datum the solution of the initial boundary value problem is
eventually positive. In general, this positivity comes up almost immediately, since
the higher modes (in the expansion with respect to the eigenfunctions) decay much
faster than the fundamental mode.

It is the goal of the present note to show a related result for the Cauchy problem,
i.e. in the case when the domain is the whole R

n. Here n ∈ N.
Consider the problem

{

ut + ∆2u = 0 in R
n+1
+ := R

n × [0,∞)
u(x, 0) = u0(x) in R

n ,
(1)

where u0 is a continuous initial datum. We prove
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Theorem 1. Assume that 0 6≡ u0 ≥ 0 is continuous and has compact support in
R

n. Let u = u(x, t) denote the corresponding bounded strong solution of (1). Then,
(i) for any compact set K ⊂ R

n there exists TK = TK(u0) > 0 such that u(x, t) >
0 for all x ∈ K and t ≥ TK ;

(ii) there exists τ = τ(u0) > 0 such that for all t > τ there exists xt ∈ R
n such

that u(xt, t) < 0.

The trivial example u0 ≡ 1 shows that, at least for statement (ii), the compact
support assumption cannot be dropped. By Theorem 1 we see that negativity for
(1) exists in general and goes to infinity. We believe that a similar phenomenon
might also be observed in nonlinear equations like e.g. those considered in [5]; for
the elliptic counterpart, see [4]. Such a result, combined with [5, Theorem 2] would
allow to prove blow up results for certain Cauchy problems with odd nonlinearities.
This observation was our original motivation for this paper. As far as existence
questions for nonlinear problems are concerned, a way out of the lack of positivity
preserving is the positive majorizing self similar kernel introduced by Galaktionov–
Pohožaev [3].

2. Proof of Theorem 1. The kernel of the linear operator v 7→ vt + ∆2v in R
n is

given by

b(x, t) =
f(η)

tn/4
, η =

x

t1/4
,

f(η) = ω0|η|1−n

∫ ∞

0

e−s4

(|η|s)n/2J(n−2)/2(|η|s) ds ,

(2)

where Jm denotes the m-th Bessel function and ω0 a suitable constant such that
∫

Rn

f(η) dη = 1.

The Fourier transform of b is easily obtained explicitly. Transforming this term
back, writing the integral in spherical coordinates and applying [1, (4.9.12)] yields
(2). With the change of variables σ = |x|s/t1/4, the kernel b(t) = b(x, t) reads

b(x, t) =
ω0

|x|n
∫ ∞

0

exp

(

− t

|x|4 σ4

)

σn/2J(n−2)/2(σ) dσ .

We define
H(σ) = ω0

√
σJ(n−2)/2(σ), (3)

since this function has suitable monotonicity properties, which we will explain and
use below. So, b may be rewritten as

b(x, t) = |x|−n

∫ ∞

0

exp

(

− t

|x|4 σ4

)

σ(n−1)/2H(σ) dσ.

Therefore, since u0 is bounded, the (bounded strong) solution u of (1) satisfies the
integral equation

u(x, t) = b(t) ∗ u0 =

∫

Rn

u0(x − y)

|y|n
∫ ∞

0

exp

(

− t

|y|4 σ4

)

σ(n−1)/2H(σ) dσ dy . (4)

We first prove the following

Lemma 1. There exists T0 > 0 such that
∫ ∞

0

e−Tσ4

σ(n−1)/2H(σ) dσ > 0 for all T > T0 .
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Proof. As for the properties of the Bessel type function H , we refer to [1, Chapter
4], in particular Sections 4.14 and 4.15. We denote by Pk (resp. Nk) the successive
intervals, where H is positive (resp. negative) so that we have

[0,∞) =

∞
⋃

k=1

(

Pk ∪ Nk

)

.

Moreover, we write

αk := supPk = inf Nk, γk := supNk = inf Pk+1 (k ∈ N)

so that αk and γk are the zeros of the Bessel function J(n−2)/2.

Consider the function gT (s) := s(n−1)/2e−Ts4

. A simple computation shows that

s 7→ gT (s) is strictly decreasing over

[

(

n − 1

8T

)1/4

, +∞
)

. (5)

To start, just fix T sufficiently large so that
(

n − 1

8T

)1/4

<
α1

2
. (6)

If (6) holds, then, in view of (5), s 7→ gT (s) is decreasing in particular over [γ1,∞)
and we have

∫ ∞

γ1

gT (σ)H(σ) dσ =
∞
∑

k=2

(
∫

Pk

gT (σ)H(σ) dσ +

∫

Nk

gT (σ)H(σ) dσ

)

>

∞
∑

k=2

gT (αk)

(
∫

Pk

H(σ) dσ +

∫

Nk

H(σ) dσ

)

≥ 0. (7)

In the last step we applied the Lorch-Szegö Theorem [1, Corollary 4.15.2], which
applies even with strict inequality, provided (n − 2)/2 > 1/2, i.e. if n > 3. If

n = 3, one simply has H(σ) = ω0

√

2
π sin(σ) and the last inequality in (7) becomes

an equality. Equality also holds if n = 1 when H(σ) = ω0

√

2
π cos(σ) while we

postpone the case n = 2 to the end of this proof.
Moreover, we have in view of (6)

∫ γ1

0

gT (σ)H(σ) dσ >

∫ α1

4
√

(n−1)/(8T )

gT (σ)H(σ) dσ +

∫ γ1

α1

gT (σ)H(σ) dσ

> gT

(α1

2

)

∫ α1/2

4
√

(n−1)/(8T )

H(σ) dσ − gT (α1)

∣

∣

∣

∣

∫ γ1

α1

H(σ) dσ

∣

∣

∣

∣

> 0

thanks to the exponential factor in gT , provided T is chosen large enough. This
enables us to conclude that

∫ γ1

0

gT (σ)H(σ) dσ > 0

for sufficiently large T , say T ≥ T0. Combining this inequality with (7) proves the
statement, if n 6= 2.

If n = 2, according to [1, (4.8.5)], for σ large one has that asymptotically

H(σ) = ω0

√

2

π
cos

(

σ − π

4

)

+ O

(

1

σ

)

.
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For each pair (Pk, Nk), one has to proceed as for (P1, N1) in the case n 6= 2.
Thanks to the asymptotic expansion of H , this argument becomes uniform in k, if
T is chosen large enough.

Proof of (i) in Theorem 1. We take T0 from Lemma 1 and for all (x, t) ∈ R
n+1
+ we

decompose the integral in (4) as follows

u(x, t) =

∫

|y|>(t/T0)1/4

∫ ∞

0

+

∫

|y|<(t/T0)1/4

∫ ∞

0

. (8)

From Lemma 1 we infer at once that
∫

|y|<(t/T0)1/4

∫ ∞

0

≥ 0 , (9)

while for x in a fixed compact set and t large enough, one even has strict positivity.
Moreover, taking R > 0 sufficiently large so that spt(u0) ⊂ BR (the ball of radius
R), we may observe that

u0(x − y) 6= 0 =⇒ |x − y| < R =⇒ |x| > |y| − R >

(

t

T0

)1/4

− R

since |y| >
(

t
T0

)1/4

in the first integral in (8). Therefore

|x| ≤
(

t

T0

)1/4

− R =⇒ u0(x − y) = 0

in the first integral in (8). Together with (9), this shows that

u(x, t) ≥ 0 for all |x| ≤
(

t

T0

)1/4

− R

and even strict positivity for large enough t. Finally, fix a compact set K ⊂ R
n and

let TK > 0 be sufficiently large so that strict positivity holds in (9) and that

K ⊂
{

x ∈ R
n; |x| ≤

(

TK

T0

)1/4

− R

}

.

Then, u(x, t) > 0 for all x ∈ K and t ≥ TK , which is precisely statement (i) of
Theorem 1. �

Proof of (ii) in Theorem 1. According to [2], b and hence f in (2) are sign changing.
Denote by N the open (radially symmetric) region of negativity of f , N := {z ∈
R

n; f(z) < 0}. As t increases, the set t1/4N := {z ∈ R
n; f( z

t1/4
) < 0} becomes

larger and larger. Take t sufficiently large (say t > τ) so that

Bt := {x ∈ R
n; x − z ∈ t1/4N for all z ∈ spt(u0)} 6= ∅.

For any t > τ choose xt ∈ Bt and let C(xt) := {y ∈ R
n; xt − y ∈ spt(u0)}. Next,

rewrite (4) as

u(x, t) = t−n/4

∫

Rn

u0(x − y) f
( y

t1/4

)

dy

so that

u(xt, t) = t−n/4

∫

C(xt)

u0(xt − y) f
( y

t1/4

)

dy . (10)
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Note that if y ∈ C(xt), then there exists z ∈ spt(u0) such that y = xt−z. But since
xt ∈ Bt, this implies y ∈ t1/4N , namely f( y

t1/4
) < 0. Since for a.e. y ∈ C(xt) we

also have u0(xt − y) > 0, by using (10) we deduce that u(xt, t) < 0, which proves
statement (ii) of Theorem 1. �
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