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SUMMARY. We survey some explanations of the Tacoma Narrows Bridge collapse, which 

occurred in 1940: none of them is universally accepted. We then introduce a new mathematical 

model for the study of the dynamical behavior of suspension bridges and we show that it provides 

a realistic explanation of the Tacoma collapse. 

1 INTRODUCTION 

On November 7, 1940, the Tacoma Narrows Bridge (TNB) collapsed and a movie [1] testifies 

this amazing event. The wind was blowing at approximately 80 km/h and, without any 

intermediate stage, a violent destructive torsional oscillation started. These oscillations were 

already seen in other bridges before 1940, see Section 4.3 in [2] and Section 2 in [3]. Natural 

questions arising from the TNB collapse and from similar failures are the following [p.53,2]: 

- how could a span designed to withstand 161 km/h winds succumb under a wind of less than half 

that velocity? 

- how could horizontal wind forces be translated into dynamic vertical and torsional motion? 

The answer to the first question appears fairly simple. The bridge was ready to withstand 161 

km/h wind provided that the oscillation would have been longitudinal. But since unexpected 

torsional oscillations appeared, this considerably lowered the critical speed of the wind. The 

Report [4] considers the crucial event in the collapse to be the sudden change from a vertical to a 

torsional mode of oscillation. Therefore, the two above questions reduce to the following: 

why do torsional oscillations appear suddenly in suspension bridges? 

Many attempts to explain the TNB collapse have been made but, after 73 years, a full 

explanation of the reasons of the collapse is not available, see again [2]. In the next section we 

survey some of these attempts and we explain why they fail to answer to the above question. Then 

we recall the model suggested in [5], we complement it with some new numerical results, and we 

explain how it may be used to give a satisfactory answer. 

2 PRIOR EXPLANATIONS OF THE TACOMA NARROWS BRIDGE COLLAPSE 

2.1 Structural failure 

A first natural explanation of the collapse is a mistake in the project. From the New York 

Times [6] we recall a comment by Andrew, chief engineer in charge of constructing the bridge, 

who claims that the collapse probably was due to the fact that flat, solid girders were used along 

one side of the span. These girders, he said, caught the wind like a kite and caused the bridge to 

sway. However, the video of the collapse does not show the TNB as a kite. Moreover, Leon 

Moisseiff, who was charged with the project was not considered guilty for the TNB failure: 

Steinman-Watson [7] wrote that the span failure is not to be blamed on him; the entire profession 

shares in the responsibility. It is simply that the profession had neglected to combine, and apply in 



time, the knowledge of aerodynamics and of dynamic vibrations with its rapidly advancing 

knowledge of structural design. 

Several people attempted to justify the collapse with a structural failure. Delatte [8] suggests 

that a contributing factor may have been slippage of a band that retained the cables. Then, by 

invoking [p.226,9], he writes that on November 7 a cable band slipped out of place at mid-span, 

and the motions became asymmetrical, like an airplane banking in different directions. The 

twisting caused metal fatigue, and the hangers broke like paper clips that had been bent too often. 

This colorful description was not confirmed by subsequent studies. 

In the preface of the Report [4] one reads that the first failure was the slipping of the cable … 

this slipping probably initiated the torsional oscillations … these torsional movements caused 

breaking stresses at various points … further structural damage followed almost immediately. 

This kind of “domino effect” was not analyzed further in the sequel and, a few years after the 

collapse, Steinman [10] wrote that the ties permitted - not caused - the catastrophic oscillations 

that wrecked the structure. 

Steinman designed the Thousand Islands Bridge (1938) and the Deer Isle Bridge (1939), which 

had similar narrow and flexible structures as the TNB. As mentioned at [p.33,8], both bridges 

exhibited substantial oscillations in the wind and required stiffening with cable ties. Vertical and 

torsional motions were both observed. The cables ties substantially reduced, but did not eliminate, 

the motions, and were thought to be an adequate repair. Hence, the phenomenon observed at the 

TNB is present in similar bridges and the collapse cannot be attributed to a structural failure. 

Steinman [11] claimed that [4] leaves many questions unanswered. It does not tell what 

combinations of cross-sections produce aerodynamic instability, how aerodynamic instability can 

be reasonably predicted or readily tested, nor how it can be prevented. His final observation is 

that it is more scientific to eliminate the cause than to build up the structure to resist the effect. 

2.2 External resonance 

In an article appeared in the New York Times [12] a couple of days after the collapse, one may 

read like all suspension bridges, that at Tacoma both heaved and swayed with a high wind. It takes 

only a tap to start a pendulum swinging. Time successive taps correctly and soon the pendulum 

swings with its maximum amplitude. So with the bridge. What physicists call resonance was 

established, with the result that the swaying and heaving exceeded the limits of safety. 

One of the conclusions of the Federal Report [p.128,4] is that resonance with alternating 

periodic eddies (sometimes called Karman vortices) has been mentioned as a possible inducement 

to large amplitude oscillations. But most people believe that the Report does not explain how the 

wind, random in nature, might produce a precise periodic impulse. The mathematicians Lazer-

McKenna [13] point out that the phenomenon of linear resonance is very precise. Could it really 

be that such precise conditions existed in the middle of the Tacoma Narrows, in an extremely 

powerful storm? The physicists Green-Unruh [14] mention that making the comparison to a forced 

harmonic oscillator requires that the wind generates a periodic force tuned to the natural 

frequency of the bridge. Among engineers, Scanlan [15] writes others have added to the confusion. 

A recent mathematics text, for example, seeking an application for a developed theory of 

parametric resonance, attempts to explain the Tacoma Narrows failure through this phenomenon. 

Moreover, Billah-Scanlan [16] make a fool of physics textbooks who attempt to explain the TNB 

collapse with resonance. 

History may explain why the TNB collapse was attributed to resonance. Built in 1826, the 

Broughton Suspension Bridge collapsed in 1831 due to mechanical resonance induced by troops 

marching over the bridge in step. Since then, all troops “break step” when crossing a bridge. The 

probability that the step frequency of a troop coincides exactly with a natural frequency of a bridge 



is zero, but if these frequencies almost coincide then, unconsciously, the step of the humans tends 

to approach a natural frequency of the structure. Built in 1839, the Angers Suspension Bridge 

collapsed in 1850 while a battalion of soldiers was marching across it. The soldiers had been 

ordered to break step and to space themselves farther apart than normal. But the battalion arrived 

during a thunderstorm when the wind was making the bridge oscillate and their efforts to match 

the swaying and keep their balance has caused them to involuntarily march with the same cadence, 

contributing to the resonance. A related but slightly different behavior was observed in June 2000, 

on the opening day of the London Millennium Bridge: the crowd streamed on it, the bridge started 

to sway from side to side and pedestrians fell spontaneously into step with the oscillations, thereby 

amplifying them, see [17]. In all these accidents the external forcing was periodic and precise, 

similar to one of the vibrating modes of the bridge. But this was not the case at the TNB. 

Hence, an external resonance, intended as a perfect matching between the exterior wind and 

the parameters of the bridge, is not the culprit for the TNB collapse.  

2.3 Vortices 

Every oscillating structure has its own natural frequencies and resonance occurs if the 

excitation force acts periodically and with one of the natural frequencies. Due to the non-

streamlined shape of the bridge, a possible candidate of the periodicity in the wind force was the 

vortex shedding. These wakes are accompanied by alternating low-pressure vortices on the 

downwind side of the body, the von Karman vortex street. As a consequence, the bridge would 

move towards the low-pressure zone, in an oscillating movement called vortex-induced vibration. 

If the frequency of vortex shedding matches the natural frequency of the bridge, then the structure 

resonates and oscillations may become self-sustaining. Von Karman claimed that the motion of the 

TNB was due to these vortices and that the von Karman street wake reinforced the already present 

oscillations and caused the center span to violent twist until the bridge collapse, see [p.31,8]. But, 

according to Scanlan [15], some of the writings of von Karman leave a trail of confusion ... it can 

clearly be shown that the rhythm of the failure (torsion) mode has nothing to do with the natural 

rhythm of shed vortices following the Karman vortex street pattern. And, indeed, the calculated 

frequency of a vortex caused by a 68 km/h wind is 1 Hz, whereas the frequency of the torsional 

oscillations measured by Farquharson was 0.2 Hz, see [p.120,8]. The conclusion on [p.122,16] is 

that we see the flutter vortex trail as a consequence, not as a primary cause. 

Also Green-Unruh [11] claim that the von Karman vortex street forms at a frequency 

determined by the geometry and the wind velocity. These vortices form independently of the 

motion and are not responsible for the catastrophic oscillations of the TNB. Their own conclusion 

is similar, namely vortices are also produced as a result of the body's motion. 

What remained unsolved for a long time was how vortices could be responsible for the wind-

excited twisting motion. In 2000, Larsen [p.247,18] writes the vortex street may cause limited 

torsion oscillations, but cannot be held responsible for divergent large-amplitude torsion 

oscillations. Then Larsen [p.245,18] claims that the key to the torsion instability mechanism is the 

formation and drift of large-scale vortices on the cross section. A discrete vortex simulation of the 

flow around a simplified model of the Tacoma Narrows section shape, in which the angle of attack 

changes stepwise from 0° to 10°, highlights the vortex dynamics involved. Whence, it is claimed 

that the variation of the angle of attack creates an alternation of vortices characterized by the 

direction of rotation and the position above/below the roadway. These vortices are also due to the 

H-form of the cross section and may push up or pull down the endpoints of the cross section. The 

variation of the angles also generates extra energy that gives rise to higher amplitudes of torsional 

oscillations and the cross section oscillates in a self-sustaining motion. Although this theory may 

describe the self-exciting phenomenon and the increase of the width of torsional oscillations, it 



does not explain how the torsional oscillation starts. An explanation with stepwise angles of attack 

could be reliable only if the wind did not vary the angle of attack for a long time and, suddenly, it 

started varying the angle of attack creating a torsional motion. It also appears somehow obvious 

that if the wind is known to vary stepwise the angle of attack of about 10°, then the movement of 

the cross section of the roadway will be quite similar to a swing. But did the wind really vary 

stepwise the angle of attack on November 7, 1940? From [p.130,4] we quote It is very improbable 

that resonance with alternating vortices plays an important role in the oscillations of bridges. 

Skeptic comments on the Larsen work were also made by Green-Unruh [14] who write this 

analysis is somewhat incomplete given the data available and claim that the Larsen model does 

not adequately explain data at around 23 m/s, which was the wind velocity the day of the collapse. 

Green-Unruh pursue the Larsen explanation under three different aspects: they study how 

vortices drift near boundaries, how a vortex drifts near the trailing edge of the bridge, and the 

production of vortices at the leading edge. The conclusion in [14] contains several criticisms on 

their own work; they write the detailed method through which the oscillatory behavior is 

established may require further details ... the range of wind speeds where the model is applicable 

has not been fully established. At the extreme high and low values, computational calculations 

become less reliable. This is true in general: as long as a phenomenon is in a suitable range, any 

explanation is satisfactory. But the TNB behavior was not in a “reasonable range”.  

2.4 Flutter theory 

Flutter is a self-feeding and potentially destructive vibration where aerodynamic forces on an 

object couple with a structure's natural mode of vibration to produce rapid periodic motion. Flutter 

may occur in any object within a fluid flow, under the conditions that a positive feedback occurs 

between the structure's natural vibration and the aerodynamic forces. The vibrational movement of 

the object increases an aerodynamic load, which in turn drives the object to move further. If the 

energy input by the aerodynamic excitation in a cycle is larger than that dissipated by the damping 

in the system, the amplitude of vibration increases, resulting in self-exciting oscillations. 

While discussing oscillations in bridges, the physicist Rocard [p.185,19] attributes to Bleich 

[20] to have pointed out the connection with the flutter speed of aircraft wings... He distinguishes 

clearly between flutter and the effect of the staggered vortices and expresses the opinion that two 

degrees of freedom (bending and torsion) at least are necessary for oscillations of this kind. At  

pp.246-247 in [21] it is assumed that the bridge is subject to a natural steady state oscillating 

motion and the flutter speed is defined as follows: with increasing wind speed the external force 

necessary to maintain the motion at first increases and then decreases until a point is reached 

where the air forces alone sustain a constant amplitude of the oscillation. The corresponding 

velocity is called the critical velocity or flutter speed. The flutter speed is then described by 

noticing that below the critical velocity �� an exciting force is necessary to maintain a steady-state 

motion; above the critical velocity the direction of the force must be reversed (damping force) to 

maintain the steady state motion. In absence of such a damping force the slightest increase of the 

velocity above �� causes augmentation of the amplitude. Whence, if exceeded, the flutter speed 

may give rise to uncontrolled phenomena such as torsional oscillations. Rocard [p.101,19] claims 

that the main contribution of his own work is a precise method of calculating the critical speed of 

wind for any given suspension bridge. With the parameters of the TNB, his computations lead to a 

critical speed of wind coinciding with that of the day of the collapse, see [p.158,19]. As far as we 

are aware, Rocard's method to determine the flutter speed was not used in later plans. Further 

credit to [20] is given on [p.80,2] where one reads: Bleich's work ... ultimately opened up a whole 

new field of study. Wind tunnel tests on thin plates suggested that higher wind velocities increased 

the frequency of vertical oscillation while decreasing that of torsional oscillation. The conclusion 



is that Bleich's work could not be used to explain the Tacoma Narrows Bridge collapse. 

While referring explicitly to the work by Bleich and Rocard, Billah-Scanlan [p.122,16] write 

that another error accompanying many accounts has been the confusion of the phenomenon of 

bridge flutter with that of airplane wing flutter as though they were identical. Billah-Scanlan also 

emphasize that forced resonance and self-excitation are fundamentally different phenomena and 

they claim that their work demonstrates that the ultimate failure of the bridge was in fact related 

to an aerodynamically induced condition of self-excitation or “negative damping” in a torsional 

degree of freedom. The negative damping together with the torsional degree of freedom caused the 

torsional flutter so that, as the roadway rotated, the wind force acting on the surface changed, 

when the bridge rotated back the forces pushed the bridge in the opposite direction. They claim 

that this negative damping effect and increase in rotation lead up to the torsional oscillation that 

caused the collapse of the bridge. But Larsen [p.244,18] writes that Billah and Scanlan ... fail to 

connect the vortex pattern to the shift of apparent section damping from positive to negative, 

which signifies the onset of torsional instability. We think that self-excited oscillations may appear 

only if some oscillations already exist, but what creates the “first” torsional oscillation? 

 

3 APPEARANCE OF TORSIONAL OSCILLATIONS IN ISOLATED SYSTEMS 

 

Consider a suspension bridge subject to gravity and to the elastic restoring forces due to the 

action of the hangers. We model the bridge by considering a number �  of parallel rods, 

representing the cross sections of the roadway whose endpoints are linked to the hangers. Each rod 

interacts with the two nearest neighbors rods with linear attractive forces representing resistance to 

longitudinal and torsional stretching. This model is inspired to the celebrated Fermi-Pasta-Ulam 

model [22]. In Figure 1 we represent the model, the red cross sections being the rods linked to the 

hangers, which behave as nonlinear springs, and the grey part of the roadway being the 

connections between rods and behaving like an elastic membrane. 

 

      
 
Figure 1. A discretized suspension bridge (left); vertical and torsional movements of a rod (right). 

 

Each cross section is modeled as a rod, of mass � and length 2ℓ, subject to the forces exerted by 

the two lateral hangers C1 and C2, see again Figure 1: � is the angle of deflection from horizontal, 

� is the downwards displacement from equilibrium of the barycenter. The forces are denoted by 

	(� + ℓsin�) and 	(� − ℓsin�)  and also take into account the gravity. The force 	 = 	(�) is 

nonlinear, reflecting the nonlinear elastic behavior of the whole structure, including the action of 

the sustaining cable. At � = 0 the elastic force exerted by the hanger balances the gravity, so that 

the endpoint of the rod is at an equilibrium and 	(0) = 0. Newton's equation for this system reads 

 

�ℓ�
3 �� = ℓcos��	(� − ℓsin�) − 	(� + ℓsin�)�, ��� = 	(� + ℓsin�) + 	(� + ℓsin�)				(1) 
 

which models a free rod with no interaction with other rods. By analyzing forced and damped 



versions of system (1), McKenna-Tuama [23,24] were able to numerically show in a cross section 

a sudden transition from vertical oscillations to torsional oscillations. 

We initially consider an isolated system, that is, a model stripped of internal damping and 

external forcing. If 	  were linear, then (1) would decouple and there would be no interaction 

between the � and � oscillators. We take 

 

	(�) = −(� + �� + ��)	; 
 

this choice satisfies the minimal requirements of being an asymmetric perturbation of a linear 

force but it is not necessarily expected to yield accurate quantitative information. Numerical 

experiments show that the qualitative behavior of the system is not affected by the specific choice 

of the nonlinearity. We then define the positive potential energy �(�) = − 	(!)"!#
$ . 

We label the � rods by % = 1,… , �: let �' be the downwards displacement of the center of the %-
th rod and �' be its angle of deflection from horizontal. Assume that the rods have mass � = 1 

and half-length ℓ = 1 . Set �$ = �()* = �$ = �()* = 0  to model the connection between the 

bridge and the ground. We find the following system of 2� equations (% = 1,… , �): 
 

��' + 3+,-(Θ, Y) = 0,									��' + +0-(Θ, Y) = 0,																																					(2) 
 

where (Θ, Y) = (�*, … , �( , �*, … , �() ∈ ℝ�(	and 

 

+(Θ, Y) =3[�(�' + sin �'
(

'5*
) + �(�' − sin �')] +

1
23[70(�' − �')*)�

(

'5$
+ 7,(�' − �')*)�]; 

 

here 70 	and 7,	are the vertical and torsional stiffness of the bridge. The total energy of the system 

 

9�Θ: , Y: , Θ, Y� = |Θ: |�
6 + |Y: |�

2 + 	+(Θ, Y)																																										(3) 
 

is conserved and is determined by the initial conditions 

 

=Θ: (0), Y(0), Θ(0), Y(0)> = (Θ*, Y*, Θ$, Y$).																																						(4) 
 

For all A = 1,… , � we compute numerically the initial conditions �Y*(A, 9$), Y$(A, 9$)� of the 

(periodic) A-th nonlinear normal mode of vertical oscillation at energy 9$ > 0 and we denote by 

C = C(A, 9$) its period. The initial condition (0, Y*(A, 9$), 0, Y$(A, 9$)) lies on the orbit of a C-

periodic solution to (2) at energy 9$: in this case, one has Θ(D) ≡ 0. We aim to study the torsional 

stability of the A-th mode, that is, to establish if small Θ-perturbations of such initial condition 

give rise to wide torsional oscillations. We refer to [5] for a precise definition of nonlinear modes. 

We take � = 16 and 70 = 7, = 320. Figure 2 represents the solutions to the system (2) with 

initial conditions (4) with |(Θ*, Θ$)|á|(Y*, Y$)| and (A, 9$) = (1,500) for D ∈ [0,200]. The black 

plot represents �'(D) whereas the grey plot represents �'(D), % = 1,… ,8: we only display these 

(�', �') because (�' , �') ≈ (�*IJ' , �*IJ'). We also refer to the movies available at the web page 

[25] where one can see the similarity with the Tacoma collapse and experiments for other modes A. 

The oscillations of the angular coordinates �' are initially small and, suddenly, they become larger.  



 
 
Figure 2. The solution �'  (black) and �' (grey) (% = 1,… ,8) to (2) with (A, 9$) = (1,500). 

 

Numerical evidence suggests that for every A there exists a critical threshold 9KL for the energy (3): 

if 9 < 9KL  then the A -th nonlinear mode of vertical oscillation is stable, while if 9 > 9KL  it is 

unstable and a tiny perturbation in any �'-variable can lead to wide torsional oscillations. 

4 RESONANCES AMONG OSCILLATORS 

 

In order to explain the observed phenomenon we consider now the system (2) with � = 1 and 

70 = 7, = 1; we drop the index on � and �. Here the phase space is 4-dimensional but, due to the 

conservation of energy, the dynamics takes place in a 3-dimensional manifold. We take a two-

dimensional Poincaré section of this manifold. The pictures in Figure 3 represent the (�: , �) 
intersections of some solutions to (1) with the plane � = 0 when �: > 0 at energy 9$ = 3.4 and 

9$ = 3.8. The origin is a stable fixed point for the Poincaré map in the picture on the left, whereas 

it is unstable in the picture on the right. This bifurcation is well-known among specialists of 

dynamical systems, and it occurs because of a resonance between the oscillators, see [5] for the 

details. We conclude that, for this problem, the critical energy threshold 9K satisfies 3.4 < 9K < 3.8. 

 

 
 

Figure 3. Poincaré maps at energies 9$ = 3.4 and 9$ = 3.8. 

 

If the maximum modulus of the two eigenvalues of the Jacobian of the Poincaré map at the origin 

equals 1 the system is stable, whereas if it exceeds 1 the system is unstable. The least energy for 

which instability is manifested is the threshold 9K for system (2) when � = 1. 

Back to system (2) with � > 1 rods, let C = C(A, 9$) denote the period of the A-th nonlinear 

normal mode of vertical oscillation at energy 9$ > 0  and let ΨOP
L : ℝ�( → ℝ�(  be defined by 

ΨOP
L (Θ*, Θ$) = =Θ: (C), Θ(C)>, where (Θ(D), Y(D)) solves (2) under the initial conditions (4). The 

map ΨOP
L  is an evolution map but it is not a Poincaré map. Still, we evaluate the stability of the A-

th mode by computing the eigenvalues of its Jacobian SΨOP
L (0,0) at (Θ*, Θ$) = (0,0): this is done 

by solving the equation linearized with respect to Θ  at (Θ, Y) = (0, YTL) , where YTL  is the A -th 

nonlinear normal mode at energy 9$, see again [5] for the details. In principle, when � > 1 one 

cannot infer the full stability of the A-th mode from its linear stability which is ensured if all 



eigenvalues of SΨOP
L (0,0) have modulus 1. But we have numerical evidence that the A-th mode is 

torsionally stable if and only if it is linearly stable. The graphs in Figure 4 display the largest 

modulus of the eigenvalues of SΨOP
L (0,0) as a function of the energy 9$, with A = 1,2,3. It appears 

that for all A there exists 9KL such that the periodic A-th mode is stable whenever 9 < 9KL and it is 

unstable if 9 is slightly larger than 9KL. This means that, if 9 < 9KL then small initial torsional data 

yield small torsional behavior for all time, whereas if 9 > 9KL  then large torsional oscillations 

suddenly appear also in presence of small initial torsional data. In fact, for higher energies, the 

system may become stable again, but this has a purely theoretical relevance: in order to ensure that 

the bridge is torsionally stable its internal energy should be smaller than the least 9KL. 

 

 
 

Figure 4. Largest modulus of the eigenvalues of SΨOP
L (0,0) versus 9$ for A = 1,2,3. 

  

5 APPEARANCE OF TORSIONAL OSCILLATIONS IN DAMPED SYSTEM 

 

The results in this section are new. Let U > 0 and consider (2) with a damping term: 

 

��' + U�:' + 3+,-(Θ, Y) = 0,													��' + U�:' + +0-(Θ, Y) = 0,											(% = 1,… , �)																						(5) 
 

Fix A ∈ {1, … , �} and let �Y*(A, 9$), Y$(A, 9$)� be as in Section 3. We take as initial conditions 

 

=Θ: (0), Y(0), Θ(0), Y(0)> = �Θ*, Y*(A, 9$), Θ$, Y$(A, 9$)�		with		0 < |(Θ*, Θ$)| < 10J[.							(6) 
 

We take again � = 16. Figure 5 plots the solutions to (5)-(6) for A = 1, U = 0.01 and U = 0.02, 

and initial energy 9(0) > 500, no wide torsion is visible for 9(0) = 500. These plots should be 

compared with Figure 2.  

 

 

 
 

Figure 5: The solution �'  (black) and �'  (grey) (% = 1,… ,8) to (5)-(6) for (A, 9(0)) = (1,1000) 
with U = 0.01(first line) and (A, 9(0)) = (1,1500) with U = 0.02 (second line), D ∈ [0,200]. 



 
 

Figure 6. Plot of max_(|`_L(9$)|) versus 9(0) = 9$ for A = 1,2,3 and U = 0.1. 

 

The numerical results for the damped system (5) suggest that for any U > 0 there exists an energy 

threshold 9KL,a which, if exceeded by the initial energy 9(0) = 9$ yields torsional instability of the 

A-th nonlinear normal mode YTL(D) of (5) at energy 9$, while if 0 < 9(0) < 9KL,a then the system is 

torsionally stable. Large U dissipate the energy very rapidly, preventing instability. It appears that 

the maps U ↦ 9KL,a  are strictly increasing: if we increase U  from 0  to 0.1 , the thresholds 9KL,a  

increase from 450 to 500 (A = 1), from 195 to 205 (A = 2), from 5100 to 5200 (A = 3). To 

compute 9KL,a  we use again the evolution map ΨOP
L  defined above with iteration time equal to the 

period C = C(A, 9$) of the periodic A-th vertical mode of oscillation at energy 9$ > 0. We then 

compute the 2� eigenvalues `*L(9$), … , `�(L (9$) of its Jacobian SΨOP
L (0,0) at (Θ*, Θ$) = (0,0). In 

turn, the derivatives of ΨOP
L at (0,0) are computed by linearizing (5) at (Θ, Y) = (0, YTL). Denoting 

by Ξ = (d*, … , d() the variation of Θ ≡ 0, this yields the system 

 

d�' + Ud:' + 33 +,-,e(0, YTL(D))df
(

f5*
= 0																							(% = 1,… , �).																						(7) 

 

The h -th column of SΨOP
L (0,0)  is the solution (Ξ: (C), Ξ(C))  at time C(A, 9$)of (7) with initial 

conditions =Ξ: (0), Ξ(0)> = i_ 	(h = 1,… ,2�); here i_  is the h-th element of the canonical basis of 

ℝ�(. It turns out that the solution to (5) with initial data (6) has small (Θ: (D), Θ(D)) for all D > 0 if 

and only if max_(|`_L(9$)|) ≤ 1. Therefore, 9KL,a = inf 	l9$ > 0;	max_�m`_L(9$)m� > 1n. Figure 6 

should be compared with Figure 4. 

6 CONCLUSIONS 

 

An external resonance, the phenomenon which matches the frequency of an external forcing 

with a natural frequency of the structure, cannot be the reason of the TNB collapse. We have seen 

why external resonances have to be considered the onset of destructive torsional oscillations. Our 

model views a suspension bridge as a system of coupled nonlinear oscillators where there can be a 

sudden transfer of oscillations between the oscillators when large energies are within the structure. 

Some evolution maps give an effective way to compute the energy threshold where this transfer 

starts, both in the conservative and damped cases. Any source inserting energy into the structure 

may overcome the critical energy threshold of the bridge and give rise to uncontrolled oscillations. 

In the Report [p.28,4] one finds a letter by Durkee, a project engineer, which states that There 

appears to be no difference in the motion whether the wind is steady or gusty. Hence, the bridge 

behaves driven by its own internal features, independently of the angle of attack and of the 

frequency of the wind. Only the amount of energy present in the structure is important. If there is 

enough energy, then longitudinal oscillations may suddenly switch, without intermediate stages, to 

destructive torsional oscillations. We believe that the TNB collapsed because that day the critical 



energy threshold was exceeded by the amount of energy inserted by the wind into the structure. 

This gave rise to an internal resonance which started the destructive torsional oscillation. 
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