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Abstract

We give sufficient conditions for local solutions to some fourth order semilinear
ordinary differential equations to blow up in finite time with wide oscillations, a
phenomenon not visible for lower order equations. The result is then applied to
several classes of semilinear partial differential equations in order to characterize
the blow up of solutions including, in particular, its applications to a suspension
bridge model. We also give numerical results which describe this oscillating blow
up and allow us to suggest several open problems and to formulate some related
conjectures.

1. Introduction

In this paper we are interested in finite time blow up of solutions to the ordinary
differential equation

w”(s) +kw" () + f(w(s) =0 (s €R), ey

where k € R, and f is a locally Lipschitz function. This equation arises in several
contexts. With no hope of being exhaustive, let us mention some models which lead
to (1). When £ is negative (1) is known as the extended Fisher—Kolmogorov equa-
tion, whereas when k is positive it is referred to as the Swift—-Hohenberg equation,
see [27]. For f(r) = t — %, (1) arises in the dynamic phase-space analogy of a
nonlinearly supported elastic strut [20]. In [1] the existence of even homoclinics to
w = 0 was proved whenever k < 0. When f(¢) = R (1) serves as a model of
pattern formation in many physical, chemical or biological systems, see [4,5] and
references therein. The slightly different nonlinearity f(r) =t — > 4+ > was used
by PELETIER [28] in order to investigate localization and spreading of deformation
of a strut confined by an elastic foundation. Last but not least, we mention the
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important book by PELETIER—TROY [27], where one can find many other physical
models, a survey of existing results, and further references.

The primary purpose of the present paper is to contribute to a better under-
standing of the qualitative properties of solutions to (1) when the nonlinearity f
satisfies

f eLip,R), f(@)t>0 foreveryt e R\ {0}. 2)

Further assumptions on f are needed in the sequel, although the prototype nonlin-
earity we have in mind is

fO=altl "+t (p>qg=1, a20). 3)

The second, and probably most ambitious, purpose of the present paper is to
connect the phenomena which hold for (1) with several classes of fourth order
partial differential equations. The first example concerns a nonlinear fourth order
wave equation. Under suitable boundary and initial conditions, the following non-
linear beam equation was proposed by LAZER—-MCKENNA [22] as a model for a
suspension bridge:

Ut + yxey +yut =W, 1), xe(0,L), t>0, )

where L > 0 denotes the length of the bridge, u™ = max{u, 0}, yu™ represents the
force due to the cables which are considered as a spring with a one-sided restoring
force (equal to yu if u is downward positive and to O if u is upward negative),
and W represents the forcing term acting on the bridge (including its own weight
per unit length and the wind or other external sources). The solution u# represents
the vertical displacement when the beam is bending. After some normalization,
MCcKENNA-WALTER [26] reduce the problem of finding traveling wave solutions
of (4) to solving (1) with k € (0,2) and f(t) = (+ + 1) — 1. In Section 3.1
we discuss this model in more detail and we analyze a variant that we recently
suggested in [18,19]; this new variant perfectly fits with our results.

When k = —4, equation (1) with f(¢) = e’ — 1 arises while seeking radial
solutions to the biharmonic PDE

Au+ et = ILER \ {0}; 5)
x|+
we refer to [3] for the transformation of this equation, which leads to (1), and for fur-
ther semilinear biharmonic PDEs which can be transformed into (1) with the same
change of variables. Moreover, with a different change of variables, radial solutions
to biharmonic PDEs both at critical growth (in the sense of Sobolev exponent) and
degenerate, such as

Alu+u¥ "y =0 in R"(n=5),
Al Paw) + xRl Pu =0 in R (n23), ©6)

can also be reduced to (1), see [14, 18] and further results in Section 3.2. In particu-
lar, for the critical growth equation, our results are connected with some Liouville
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Theorems, see [9]. Our results enable us to prove that radial solutions to these
equations blow up at some finite radius with wide oscillations.

Finally, for n = 2, consider the Cauchy problem for the nonlinear fourth order
parabolic equation

(7

ur + A%u = |u|P~ 'y in R’f‘l
u(x,0) =up(x) in R* ~°

where p > 1+ 4/n and ug satisfies suitable assumptions; the exponent 1 + 4/n is
the analogue of the Fujita-exponent (see [13,33] and references therein), arising in
second order semilinear Cauchy problems. The existence of global solutions to (7)
was proved in [15] for initial data u sufficiently small in a suitable sense, see also
[12] for decay and positivity properties of the solution. The problem of possible
blow up for large initial data was left open, and only a partial result such as [15,
Theorem 2] is known at present. In Section 3.3 we explain how the results of this
paper may shed some light on the finite time blow up of the solutions to (7).

Let us now briefly explain our main result and how it can be applied to the just
mentioned PDEs. We first recall the following statements proved in [3]:

Proposition 1. Let k € R and assume that f satisfies (2).

(1) If alocal solution w to (1) blows up at some finite R € R, then

liminf w(s) = —co  and  limsupw(s) = +o0. ®)
s—>R s—R

(i1) If f also satisfies
f@ f@

limsup—— < +o00 or limsup —— < 400, )
t—>+oo 1 t——oco I

then any local solution to (1) exists for all s € R.

If both the conditions in (9) are satisfied, then global existence follows from
classical theory of ODESs; but (9) merely requires f to be “one-sided at most linear”
so that statement (ii) is far from being trivial and, as shown in [18], it does not hold
for differential equations of order at most 3. On the other hand, Proposition 1 (i)
states that, under the sole assumption (2), the only way that finite time blow up can
occur is with “wide and thinning oscillations” of the solution w; again, in [18] we
showed that this kind of blow up is a phenomenon typical of (at least) fourth order
problems such as (1), since it does not occur in related lower order equations. Note
that assumption (9) includes, in particular, the cases where f is either concave or
convex.

Although in [18] we gave strong evidence that (8) holds whenever k < 0 and
f is superlinear in a suitable sense, a full proof of this result is not yet available. In
this paper (see Theorem 2) we fill this gap by determining a quite general sufficient
condition for the validity of (8), and we describe in some detail the way the solu-
tions blow up. This result is complemented by several comments and numerical
experiments. In the rest of the paper we will try to convince the reader that this
phenomenon occurs in most fourth order equations, including partial differential
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equations. We believe not only that this oscillating blow up is not visible for lower
order equations, but also that it is somehow present in many fourth order equations.
There are several reasons for this feeling. Firstly, as already mentioned, assump-
tion (9) shows that if the positive (respectively, negative) part of the solution is
controlled, then its negative (respectively, positive) part is also controlled, see also
the proof of [3, Lemma 23]. Secondly, the energy functions used in the present
paper seem to show an increasing chaotic behavior in (1). Finally, the PDEs which
can be reduced to (1) also exhibit the same oscillating behavior. In particular, since
this phenomenon is visible for suspension bridges, see Section 3.1, this means that
it is a phenomenon which occurs in real life.

This paper is organized as follows. In Section 2 we state our main results about
(1): a sufficient condition for finite time oscillating blow up (Theorem 2), plus a
detailed description of how this blow up occurs (see the items in Theorem 2 and the
subsequent Theorem 3). Section 2 also provides several related remarks and open
problems. In Section 3 we show how our results can be applied to several PDEs
such as (4), (5), (6) and (7). In Section 4.1 we discuss the case in which k& > 0. In
Section 4.2 we numerically study the dependence of the blow up time in terms of the
parameters involved in (1). In Section 4.3 we numerically test the validity of some
theoretically found blow up estimates. In Section 4.4 we numerically analyze the
blow up of solutions for nonlinearities f which are quite different from (3), namely
superlinearities with fairly different growths at 00; we also numerically analyze
the blow up rate found theoretically in (72). In Section 5 we study the linearized
equation in detail, and we show how different behaviors appear for different values
of k. Although the linearized problem is an approximation of (1) for small values of
the solution w, we examine whether these behaviors can also justify what happens
when w blows up. In Section 6 we introduce the energy functions and tools needed
to study (1). Sections 7 and 8 are devoted to the proofs of Theorems 2 and 3.

2. Main Results

Assume that f satisfies the regularity conditions

f € Lipioe ®) N CAR\ (0], ["(0)r >0 Vi 0, liminf| /()] >0 (10)

and the growth conditions

p>g21,a=20,0<p<B, st

plt)P*h < o1 < ot + Bt Vi e R. (11)
Notice that (10)—(11) strengthen (2) and that f in (3) satisfies both (10) and (11).
Let

t
F() :=/ f(r)dr
0

denote an antiderivative of f.
We now state our main result, namely a sufficient condition for the finite time
blow up of local solutions to (1).
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Theorem 2. Let k < 0 and assume that f satisfies (10) and (11). Assume that
w = w(s) is a local solution to (1) in a neighborhood of s = 0, which satisfies

w (O)w” (0) — w(O)w” (0) — kw(O)w' (0) > 0. (12)

Then, w blows up in finite time for s > 0, that is, there exists R < +00 such that
(8) holds. Therefore, there exists an increasing sequence {Z;} jeN such that:

(i) zj /S Rasj— oo

(i) w(z;) = 0and w has constant sign in (z;, zj+1) forall j € N.
Furthermore, in each interval (2, zj+1) where w(s) > 0, the following facts
hold:

(i) 0 < w’(zj) < —w/(Zj+1) and there exists a unique m; € (zj,zj+1) such
that w'(m ;) = 0;

(iv) w”(zj41) < 0 < w”(z}), there exists a unique rj € (zj,zj+1) where w”
changes sign, andr; < m;.
Facts similar to (iii)—(iv) (with obvious changes) occur inintervals (2, zj+1),
where w(s) < 0. Finally, with the notations of (iii),

V) lw@m;)| — +ooas j — oo and F(w(mji1)) > F(w(mj)) forall j;

(vi) there exist k1, k2 > 0, depending only on the parameters in (11), such that

K1 K2

Mjpl —mj S — - Zjyl =3 2 T Y
’ DT qwm |0 T qun )| (DA

13)

Theorem 2 deserves several comments and suggests some open problems which
we summarize as follows.

e It would be interesting to have a similar statement when k& > 0, since this
would allow us to prove Conjecture 4, below. However, if k& > 0, there are a cou-
ple of important tools which are missing and the proof of Theorem 2 cannot be
extended in a simple way, see Section 4.1. In any case, numerical results suggest
that a result similar to Theorem 2 also holds for k > 0, see again Section 4.1.

e Assumption (11) is a superlinearity assumption. Nevertheless, we believe that
the restriction that f be bounded from both above and below by the same power
p > 1 can be removed. Does Theorem 2 hold for more general kinds of superlinear
functions f? In Section 4.4 we study numerically the behavior of the solutions
when f has different growths at f-oo.

e What is the role played by the parameter k? Are the critical values of k for the
linear problem (see Section 5) also important thresholds for the nonlinear problem
(1)? Roughly speaking, these values of k play a role for small solutions w, but it is
not clear whether they also influence the solution in cases where blow up occurs.

e Can assumption (12) be relaxed? We believe that it might be relaxed, although
it cannot be completely removed since the trivial solution w(s) = 0 is globally
defined, that is, R = +o00. Closely related is the question as to whether nontrivial
global solutions to (1) exist. We performed many numerical experiments, but we
could not detect any such solution.

e In Section 4.2 we give numerical evidence that the blow up time depends
increasingly on k € R. It would be interesting to have an analytical proof of
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this fact, also in view of the application to the suspension bridge model, see
Section 3.1. O

We now compare the rate of blow up of the displacement to that of the acceler-
ation. The next result holds for any k and without assuming (10).

Theorem 3. Let k € R and assume that f satisfies (2) and (11). Assume that a
local solution w = w(s) to (1) blows up (in finite time) as s /' R < +00. Denote
by {z;} the increasing sequence of zeros of w, such that z; /' R as j — +00, see
Proposition 1. Then

Zj+1 1 Zj+1
/ (f(w(S))w(S)+F(w(S))) ds ~ 5/ w”(s)*ds (14)

j
as j — oo. Here, g(j) ~ ¥ (j) means that g(j)/¥(j) — 1as j — oo.

In the particular case where f has the form (3), (14) becomes

Zj+1 1 Zj+1
/ lw(s)|PTds ~ Pt w” (s)* ds.
b4 2(p+2) Zj

*J
Note that the term w” (s) describes the vertical acceleration, whereas f (w(s))w(s)+
F(w(s)) is a measure of the vertical displacement. Hence, by the superlinearity
assumption (11), (14) means that the vertical acceleration has a higher rate of blow
up than does the vertical displacement.

3. Applications to Fourth Order Partial Differential Equations

3.1. Suspension Bridges: A Fourth Order Wave Equation

In this section we discuss the behavior of traveling waves to (4) and some alter-
native models for suspension bridges. Following [26], we normalize (4) by setting
y = l and W = 1. Then, seeking traveling waves u(x,t) = 1 + w(x — ct) to (4)
leads to the equation

w™ (s) + kw”(s) + [w(s) + 11T =1=0 (seR, k= 02)'

In order to maintain the same behavior but with a smooth nonlinearity,
CHEN-MCKENNA [7] suggest considering the equation

w,,,,(s) —{-kw”(s) + ew(S) —1=0 (s e R), (15)

which is exactly of the same kind as (1), with f(¢) = e’ — 1 satisfying (2) but not
(11). As pointed out by MCKENNA [25, Section 6], according to historical sources,
one of the most interesting behaviors for suspension bridges (including the Golden
Gate and the Tacoma Narrows Bridges) is the following:

large vertical oscillations can rapidly change, almost instantaneously, to a
torsional oscillation.
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Our explanation for this fact is that

since the motion cannot be continued downwards due to the cables, when
the bridge reaches its equilibrium position, the existing energy generates a
crossing wave, namely a torsional oscillation.

Because the Tacoma Bridge collapse (November 1940) was due to a wide torsional
motion of the bridge (see [32]), the bridge cannot be considered as a one-dimen-
sional beam. This problem was overcome in [10, Section 2.3] by introducing the
deflection from horizontal as a second unknown function (in addition to the verti-
cal displacement). In [18] we suggested maintaining the one-dimensional model,
provided that one also allows displacements below the equilibrium position and
that these displacements replace the deflection from horizontal; in other words,
the unknown function w now represents the upwards vertical displacement when
w > 0 and the deflection from horizontal when w < 0. Instead of (4), one should
then consider the more general semilinear fourth order wave equation

Ut + Uxxxx + f(u) =0, xe(©,L), t>0, (16)

with a nonlinearity f, which should be superlinear and unbounded when both
u — =oo. The superlinearity is justified by the fact that the farther the position
of the bridge from the horizontal equilibrium position, the greater the action of the
wind becomes relevant, because the wind hits the surface of the bridge transver-
sally. If the bridge were ever to reach the limit vertical position, the wind would
hit it orthogonally. This means that the forcing term f becomes more powerful for
large displacements from the horizontal position.

Of course, traveling waves to (16) which propagate at some velocity ¢ > 0
(depending on the elasticity of the material of the beam), solve (1) with k = 2 >0.
On the other hand, the equation of the elastic combined vertical/torsional oscilla-
tion motion of suspension bridges in the wind seem to be well-known among engi-
neers. In a simplified form, the stationary equation may be written as (1), where
k = —H < 0 (H being the tension force of the cables due to the deadloads),
and where the nonlinearity f(w) is replaced by a nonlocal term, see for example
(1) and (2) in [8]. Hence, (1) also arises in the description of bridge oscillations
when k < 0. In any case, our numerical results suggest that a statement similar to
Theorem 2 also holds for k > 0, see Section 4.1. We are thus led to formulate the
following

Conjecture 4. Assume that f satisfies (10) and (11). Then traveling waves w(s) =
u(s + ct, t) to (16) blow up at some finite time R where (8) holds.

The Tacoma collapse is just the most celebrated and dramatic evidence of
bridge’s oscillations. The very day on which London’s Millennium Bridge opened
(April 2007), the crowd streamed on it and the bridge started to sway from side to
side, see [23]. According to SANDERSON [30], the bridge swaying was due to the
way people balanced themselves, rather than the timing of their steps. Therefore,
the pedestrians acted as negative dampers, adding energy to the bridge’s natural
sway. MACDONALD [24, p.1056] explains this phenomenon by writing
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above a certain critical number of pedestrians, this negative damping over-
comes the positive structural damping, causing the onset of exponentially
increasing vibrations.

This description corresponds to a typical superlinear behavior, which justifies our
assumption (11) and the particular shape of the nonlinearity f as in (3). It is not
yet clear whether « = 0 or @ > 0, that is, whether the superlinear behavior also
occurs close to equilibrium. The Millennium Bridge was made secure by adding
some (unaesthetic) positive dampers. These dampers correspond to taking a smaller
coefficient 8 in (11), in such a way to delay the effect of the superlinear behavior
of the forcing term f.

Another pedestrian bridge, the Assago metro Bridge in Milan, had a similar
problem. In February 2011, just after a concert, the public crossed the bridge and,
suddenly, the oscillations were so strong that people could hardly stand, see [11]
and also the video from [2]. Even worse was the subsequent panic effect when
the crowd started running in order to escape a possible collapse; this amplified
oscillations. This problem was also solved by adding positive dampers, see [31].

3.2. Semilinear Elliptic Biharmonic Equations

In this section we show how our results apply to semilinear elliptic partial dif-
ferential equations involving the biharmonic operator. Forn = 2 and forany p > 1,
put

O p 1= 2(p+3)((n e +4))((n —)p—(n +6)).

Then, for any ¢ € R, we consider the equation

8 VA A
A2u+2(4—n+—)u+ﬂﬁ
X

p—1) |x?
—2)p—(n+6 ® -V
—((n - nx0, "”’3)x Sl u=0 in R (17)
p—1 (p=17) Ixl

In spite of its unpleasant form, (17) has a couple of interesting particular cases.

Iftn=>5p= :’l—j and u = 0, (17) becomes

Al u+u¥ "9y =0 nR", (18)

that is, a semilinear critical growth equation (in the sense of Sobolev embedding).
Iftn=>3,p= % and u = 2n, (17) becomes the degenerate equation

A(|x|2Au) L PPy =0 inR" (19)
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We are interested in determining the behavior of radial solutions to (17). In its
radial form, with u = u(r) (r = |x]), (17) reads

Wy ZOPEN (16(" D -5+ u) )
p—1 r —1 r
p+7 16(n — 1) On,p u'(r)
+(p—1“_ P —(p_l)3+(n—1)(n—5)) p
+Hu )P ur) =0 (20)

for all » > 0. As in [14] we set

u(ry = r~¥@=D w(logr) (r > 0), w(s) = /P Dy’ (s € R).

20
Tedious calculations then show that
i:) = p4r/r=h [w’(S) - iw(S)},
r p—1
u//(r) —4p/(p—1) p+7 4(p+3)
r_2 =r p/(p u)”(s) — ﬁw’(s) + (p_—l)zw(s) s
r 2
u///(r) _ r,4p/(p,1) w,,,(s) _ 3(]) + 3) w,/(s) T 2([7 + 10]) + 13) w’(s)
r L p—1 (p—1?
8(p+ D(p+3)
——3w(s)
(p—1
- 2
W (r) = F4p/(p=1) W™ (s) — 2(3p+5) w” (s) + 11p*+50p + 35 W’ (s)
i —1 (p—172
23p +35p% +65p +25)
— 3 w'(s)
(p—1
8(p+ D(p+3)Bp+1)
7 w(s)|.
(p—1

Therefore, after the change of variables (21), equation (20) reads (s € R)
. (n%—6n+12) p> —2(n>+2n—20) p+n*+10n+44 .
w(s) — — ) w(s)

(p—1)?
16 (n? —6n+12)p* —2(n%+2n—20)p +n*+10n +28
+ 2 2 — ) w(s)
(p—1 (p—1)

+w(s) P ws) = 0.
Therefore, if
L < (n* —6n + 12)p*> —2(n®> +2n — 20)p + n> 4 10n + 28
- (p—1?
then the coefficient of w”(s) is negative, whereas the coefficient of w(s) is non-
negative and Theorem 2 applies. Hence, we have

N 023
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Corollary 5. Letn 2 2, p > 1 and jn € R satisfy (22). Let u = u(r) be a nontrivial
radially symmetric solution to the equation (17) in a neighborhood of the origin
and such that u(0)u”’ (0) < 0. Then there exists p € (0, 00) such that

liminfu(r) = —oco and limsupu(r) = +oo.
r/p r/p

In particular, this result applies to (18) and (19) since (22) is satisfied. After the
reduction to the radial form and after the change of variables (21), they become,
respectively,

2 N2

w"(s) = #w”m + (M) w(s) + [w(s) "D w(s) = 0,
_ 2 _ 4

w"(s) - %w”“) + %wm + lw) M Pw(s) =0

which are both like (1), with k < 0 and f satisfying (3). In the particular cases
where n = 8 (first equation) and n = 4 (second equation), they become

w”"(s) — 20w” (s) + 64w(s) + w(s)’ =0,
w”"(s) = 2w" (s) + w(s) + w(s)’ = 0.

Note also that the condition u(0)u” (0) < 0 replaces (12). Once again we point out
that this condition cannot be completely dropped, since otherwise we could have
the trivial solution u(r) = 0.

3.3. Parabolic Biharmonic Equations

As already mentioned, when p > 1 + 4/n, global existence results for (7)
were obtained in [12,15] under smallness assumptions on the initial data ug. More
precisely, [12, Theorem 1.5] states that there exists @ > 0 such that if ug € CO(R")
satisfies

< o n
|MO(X)|:—1+IXI‘B Vx e R
for some B = 4/(p — 1), then the solution to (7) is global in time and converges
uniformly to 0 as t — 400. On the other hand, the possible finite time blow up
in the presence of large initial data uo seems to be related to the sign changing
properties of the biharmonic heat kernels. It is shown in [12,16] that the linear
biharmonic heat operator has an “eventual local positivity” property; by this we
mean that, for positive initial data u, the solution to the linear problem (with no
source) is eventually positive on compact subsets of R” but negativity can appear at
any time far away from the origin. We also refer to [17] for possible extensions to
higher order polyharmonic heat equations. This eventual local positivity property
is also available for (7) for suitable initial data ug, see [12].

The problem of understanding if the solution to (7) may blow up in finite time

for large data uy is still open. Let

o = liminf [x|¥? Vyg(x), @ :=limsup x| P Dygy(x). (23)
|x]—00 [x|—o00
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Then [15, Theorem 2] states that there exists A > Osuchthatifw > Aorow < —A,
then the solution u to (7) may be global only if its negative part #~ and its positive
part u™ are “perfectly balanced”, that is, their masses (computed in a suitable form)
have the same weight. But our crucial estimate (72) seems to say that

/ ut))Pdx > 2/ lu™ ()P dx.
n Rn

If this were true, then we would have blow up in finite time ¢ with wide oscillations,
also, for solutions to (7).

The fact that the noncoercive equation (7) has been considered should not
change this point of view. As we have seen, finite time blow up for fourth order
equations seems to occur with wide oscillations regardless of the signs of the terms.
In any case, for the coercive equation u, + A%u + |u|?~'u = 0 in ]R'j_“, if one
multiplies it by the solution « and formally integrates by parts, one gets

1d 1
5 31 OI3 = —lAu@]3 ~ lu() 157} < 0.

This says that the L?%-norm of the solution is decreasing and, therefore, one expects
that the solution could be global and should not blow up in finite time.

Summarizing, although our results do not apply directly to (7), they suggest the
following

Conjecture 6. Assume that n > 2 and that p > 1 +4/n. Let ug € CO(R") and let
w and @ be as in (23). There exists A > 0 such thatif o > A or @ < —A, then the
solution to (7) blows up in finite time with wide oscillations. That is, there exists
T € (0, 4+00) such that
limsup sup u(x,t) = +oo and/or liminf inf u(x,t) = —oo.
t /T  xeRn t/T  xeRe

We do have some doubts about the and/or statement. We believe that blow up

with oscillations (the “and ” case) might occur, for instance, whenever

liminf |x; 7P Vuy(x) > A, lim sup e [Y P Dyo(x) < —A.
lx1]—00 |x2|—00

4. Numerical Results

Here we used a class of symmetric non-symplectic methods, which are improved
versions of methods previously introduced in [6], called block-Boundary Value
Methods (block-BVMs) [21]. They could also be rewritten in the form of implicit
collocation Runge—Kutta methods, so they share all the nice properties of symmet-
ric Runge—Kutta schemes. The block-BVMs are defined by a set of linear multi-step
formulas combined in a suitable way. In our implementation, the time integration
interval is discretized by using two different meshes: a coarser, equispaced mesh
and a finer, nonequispaced mesh. This method enjoys excellent numerical stability
properties [29] and, if a first integral exists, it is numerically conserved both on the
coarse mesh and on the finer mesh, provided that a suitable timestep is used. It is
known that if the considered differential problem is not Hamiltonian but still has a
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Fig. 2. Qualitative behavior of the solution w in the interval [z j-z j+1]

first integral, then a symmetric integrator is the most suitable. This fact motivates
our choice, since our problem is not Hamiltonian, but enjoys the conservation of
the energy function in (28). Here we define numerically the blow up time R as the
last value of the independent variable s when the numerical algorithm stops for
convergence reasons.

From Fig. 1 itis clear that the energy function is conserved until s = 96.35 with
a maximum absolute error less than 108, whereas the blow up time is R = 96.59.
This means that, numerically, the energy function is conserved almost until s = R.
This behavior was found in all the examples we ran. The corresponding solution is
reported in the second plot in Fig. 1. It is worth noticing that the solution exhibits the
same qualitative behavior as reported in [18, Figure 3], where we used numerical
methods which do not conserve the energy function. In spite of this fact, the blow
up time was computed there to be R = 96.59, as well.

4.1. Some Remarks on the Case k > 0

Let us start by explaining which parts of the proof of Theorem 2 cannot be
extended to the case where k > 0. First, the energy functions G and H, see (30)
and (31), do not possess nice monotonicity properties as in the case where k < 0.
Second, Lemma 11 does not hold and w may have very complicated behaviors in
its positivity intervals. This makes it more difficult to obtain an estimate like (76)
below. Figure 2 refers to the case in which k = 3.5, [w(0), w’(0), w” (0), w”’(0)] =
[0.8,0,0,0], with f(r) =1 + 1.
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Fig. 4. Critical levels are not monotone when k = 3.8

In Figs. 3 and 4 we exhibit a couple of plots of solutions to (1) which show,
however, that Theorem 2 probably also holds true when k > 0; we display the plot
of the solution and the dependence j +— |M | for the first critical points of the
solution to (1) in the two following cases:

k=35, f()=t+1> and [w(0),w (0), w”(0), w” (0)] = [0.8, 0,0, 0];
k=38, f() =1+ and [w(0), w (0), w”(0), w” ()] =[1,0,0,0].

4.2. Dependence of the Blow Up Time on the Parameters of the Equation

In this section we give some numerical results which show how the blow up
time R for (1) depends on «, p, k, and on the initial data; here « is the coefficient
in (3). We ran many tests and we always obtained the same behaviors, so here we
report just a few of them, to illustrate their general appearance.

On the whole, these figures (Figs. 5, 6, 7, 8, 9) enable us to make the following

Conjecture 7. When all the other parameters remain fixed, the maps R = R (k)
and R = R(w”(0)) are strictly increasing, whereas the maps R = R(p), R =
R(a), R = R(w(0)) are strictly decreasing.

4.3. Tests for the Theoretical Blow Up Estimate

For f(t) =t + 3, we tested the validity of (72) which, in this case, asymptot-
ically becomes M;.1 / M;‘_ | > 2. In the next table we show the results related to the
case p = 3,k = —1, [w(0), w'(0), w”(0), w”(0)] = [1, 0, 0, 0]. Condition (12)
is satisfied at the second integration step. It clearly appears that M;.‘ / M;.‘_l > 2
always occurs (with no doubts!).
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Fig. 5. R = R(k) with p =3, a = 1, [w(0), w’(0), w”(0), w” (0)] = [1, 0, 0, 0]
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Fig. 6. R = Rw(0)) with p = 3, = 1,k = —1,[w(0), w'(0), w’ (0), w”(0)] =
[w(0), 0,0, 0]
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Fig. 7. R = R(w”(0)) with p = 3,a = 1,k = —1, [w(0), w'(0), w”(0), w"” (0)] =
[0.8,0, w” (0), 0]
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Fig. 8. R = R(a) with p =3,k = —1, [w(0), w'(0), w”(0), w” (0)] = [1, 0, 0, 0]
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Fig. 9. R = R(p) witha = 1,k = —1, [w(0), w’(0), w” (0), w" (0)] = [1,0,0,0]

j 1 2 3 4 5 6

|Mji|  1.00e4+1 7.08¢+1 4.80e+2 3.24¢+3 2.18¢+4 147¢+5
M, /Mj 1.00e+4 25le+3 2.1le+3 2.07e+3 2.05¢+3 2.07e+3

Next, we performed the same test in the case f(t) = t + 73,k =
—1, [w(0), w'(0), w”(0), w”(0)] = [1,0,0,0]. In this case, (72) asymptotically
becomes M 8/3 /M si 31 > 2. The results are shown in the next table and, again, show
that (72) can probably be improved.

j 1 2 3 4 5 6 7
|Mj+1| 2.62¢+1 459 +2 6.57¢+3 8.78e+4 1.14e+6 147e+7 1.87¢+38
MY /M 605e+3 207e+3 121e+3 1.00e+3 9.3le+2 9.14e+2 8.8le+2

J+l1

Although the above tables suggest several comments, we do not offer any con-
jectures in this situation.

4.4. A Nonlinearity with Different Growths at Infinity

In this section we numerically study equation (1) with k = —2 and f(¢) =
el — 1+ 13, that s,

w"(s) — 2w (s) + e 1 4 w(s)3 =0 (s € R). (24)

Notice that f satisfies (2) and (9) except for the sign condition on f”, but, at least,
we have f/(t) > 0 for all t # 0. Therefore, Lemma 12 still holds. Also, Lemma
11 holds since it merely requires (2). Hence, we may obtain (72), which reads

Mt 41— My + M;.‘+1 > 2eM —2M; + 2M%;

here we assume that M; > 0 and M;; < 0. Assuming that the solution to (24)
blows up in finite time, so that (8) holds, the latter asymptotically becomes

M e i, (25)
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Fig. 10. Solution of (24) for initial data [w(0), w’(0), w” (0), w”’(0)] = [1, 0, 0, 0]

In Fig. 10, we plot a solution to (24).

Then we test the validity of (25), see the next table.
j 1 3
M; >0 1.00e + 0 1.99¢ + 1
Mjy1 <0 —136e+1 —2.55+3
Mj e™i 126e+4  9.63¢ +4

Therefore, it seems that Theorem 2 also holds true for nonlinearities f satisfying
(2) plus some superlinearity conditions at 00, but fairly different from (3).

5. The Linear Problem

For a better understanding of (1), we are interested in the case where f (1) = t,
thereby complementing the analysis in [3]. Note that this function f satisfies (2)—
(10) but not (11). It turns out that several different critical values of k appear.

In this case, (1) reads

w” () +kw'(s) +w(s) =0 (s €R). (26)

This is also the linearized equation at 0 if we assume that f/(0) = 1. More gen-
erally, if f is a function such that f'(0) = A > 0 and w is a solution to (1) then
z(s) = w(s/~/A) solves the new equation

2" (s) + % Z(s) + f(z(s)) =0,

where f (t) = % f () and f’ (0) = 1. Hence, up to scaling k, we may always
assume that f'(0) = 1. Of course, if f'(0) = 0, this trick is no longer available.

A crucial role in the study of (26) is played by the so-called characteristic
equation

A+ kA2 +1=0, 27)
whose solutions are formally given by
22— —k+Vk? -4
= 5 .
We must distinguish different cases.
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Case k < —2. The solutions to (27) are all real and are given by

i\/|k|—|—«/k2—4 i\/|k|—«/k2—4
2 2

AE

=:{£A1, A2}

Moreover, two of them are positive whereas the two others are negative. All
the solutions to (26) are given by linear combinations of the functions

ekls’ e—)L]S’

Case k = —2. The solutions to (27) are A € {%1}, both with multiplicity 2. All
the solutions to (26) are given by linear combinations of the functions

e}»zs , e—kzs )

e, set, e F, se”".

Remark 8. For later use, we remark that the solution w(s) = se™* has a maximum
point at s = 1, where H(1) = —2¢72 <0, and it converges to 0 as s — 00. This
example shows that Lemma 10 does not hold if H(m) < 0.

Case —2 < k < 2. The solutions to (27) are all complex and are given by

2—k 2+k 2—k 2+k
Ae[ix/z ii\/+,i¢ q:i\/+}

2 2 2
=:{+o £iB, ta Fif}.

Hence, the real part of these solutions can be either positive or negative. All
the solutions to (26) are given by linear combinations of the functions

e* cos(Bs), e**sin(Bs), e “cos(Bs), e * sin(Bs).

Case k = 2. The solutions to (27) are A € {£i}, both with multiplicity 2. All
the solutions to (26) are given by linear combinations of the functions

cos(s), sin(s), scos(s), ssin(s).

Case k > 2. The solutions to (27) are all purely imaginary and are given by

jE,\//<JM//<2—4 i,\/k—«/k2—4
[ ——————, iy —m—
2 2

IS =: {£i)r, Xirr}.

All the solutions to (26) are given by linear combinations of the functions
cos(A1s), sin(Ays), cos(Azs), sin(Ans).

In the table below we summarize the behavior of (nontrivial) solutions to (26).

k number of zeros limit at 00
k<=2 finite {0, +00, —00}
k=-2 finite {0, +00, —00}
—2<k<?2 infinite {0, 400, —0o0} or
—oo = liminf < limsup = +o00
k=2 infinite —oo < liminf < 0 < limsup < 400 or

—o0 = liminf < lim sup = +o00

k>?2 infinite —o0 < liminf < 0 < limsup < 400
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6. Energy Functions and Preliminary Lemmas

In this section we introduce some useful tools (energy functions) and we prove
some lemmas which will enable us to reach the proofs of our main results. We point
out that in some of the following statements the function f is not required to satisfy
assumptions (10) and (11), but only weaker assumptions. However, all the results
hold under assumptions (10)—(11).

To equation (1) we associate the energy function

1
E(s) = g w ()2 + w' (Hw” (s) + F(w(s)) — 5 w” (s)?. (28)

Then, if w solves (1), there holds

Es)=0 = &E@k)=C, 29)
for some C € R.
We also define
G(s) = w'(s)” — w(s)w"(s) — §w<s)2 (30)
so that
H(s) :=G'(s) = w'(s)w"(s) — w()w" (s) — kw(s)w'(s) (31)
and
H'(s) = G"(s) = w"(5)> — kw'(s)* 4+ w(s) f (w(s)). (32)

If K < 0 and (2) holds, by (32) we infer that
G"(s)=H'(s) 20 sothat H isnondecreasing and G is convex. (33)

All the above properties follow by repeatedly using (1) in the computations.
Further energy functions will be introduced under additional assumptions on f, see
Lemma 12 below. These energy functions are quite useful for proving qualitative
properties of the solution to (1). The first of such properties reads:

Lemma 9. Let k < 0 and assume that f € Lip,.(R) satisfies (11). Let w be a
solution to (1) defined on some maximal interval [0, R). Then, for the function H
defined in (31), the following alternative holds:

(1) If H(s) is bounded as s /' R, then R = +00, H(s) < 0 for all s and
lim H) = lim_ws) =0
(i) IfH(O) > 0, then
lim H(s) = +o0, lim G(s) = 400,
s—>R s—R

and w(s) is unbounded as s — R.
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Proof. If R < 400, Proposition 1 states that there exists a sequence of local max-
ima m; such that m; / R and w(m;) — oo as j — oo. Hence, (29) shows
that

) w//(mj)Z ]
lim ————— = lim [F(w(mn;)) — C] = +o0.
J—00 Jj—00
Since w”(m;) < 0, we infer that G(m;) = —w(m)w"(m;) — 5w(m;)*> — oo

and, subsequently, H (m j) = G'(m ) — oo in view of (33). Thus, we have proved
that if H (s) remains bounded, then R = +o00. For the remaining statements, we
refer to [3, Theorem 8] for the case k¥ < 0 and to [18, Lemma 9] for the case
k = 0. In the case where R < oo (statement (ii)) one should once more invoke
Proposition 1. O

Next, we turn our attention to geometric properties of the solution, such as
monotonicity and concavity. The next two statements are also obtained by exploit-
ing the features of the energy functions. In particular, Remark 8 shows that the next
result may not hold if the assumption H (m) > 0 is violated.

Lemma 10. Let k < 0 and assume that f satisfies (2). Assume that a solution
w = w(s) to (1) admits a local maximum at some m such that w(m) > 0 and
H(m) > 0. Then w is strictly concave in some maximal interval (m, §). In partic-
ular, in such an interval the solution w is strictly decreasing. Moreover:

— if& = 400, then lims_, o, wW(s) = —00;
— iféE < 4o0, then w(é) < 0and F(w(m)) < F(w(§)).
Therefore, the solution w vanishes exactly once in (m, &).

Proof. The assumptions w(m) > 0and H (m) > 0imply that w”’(m) < 0. Hence,
w”’(s) < 0 in some maximal right neighborhood (m, o) of m. Since w”(m) < 0,
we also have that w” (s) < 0 in some maximal interval (m, &) with & > o (equality
holds only in the case where o = 4-00).
If &£ = 400, then limg_, oo w(s) = —oo (recall that w is strictly decreasing).
If & < 400, then 0 < +00 and

s w”(s)?  is strictly increasing in [m, o]. (34)

Note that o > m is the first stationary point of w”(s)? and w”’ (o) = 0 so that, by
(29),

/" 2 k " 2
Fw(m) - = (zm) =E(m) =E(0) = Zw'(0)” + F(w(o) - = (2")
Since w”(0)? > w” (m)? by (34) and since k < 0, we then have
" 2 " 2
F(w(o)) — F(w(m)) = —g w'(0)? + 2 (20) Y (2’") ~0. (35

Since w(o) < w(m) and since (2) implies that ¢ — F(¢) is increasing for ¢ = 0,
we necessarily have w(o) < 0. Finally, since £ > o and w is strictly decreasing in
(0,&), we have w(§) < w(o) < 0 and, by (2) and (35), F(w(m)) < F(w(o)) <
F(w(§)). o
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Let w = w(s) be a local solution to (1) and assume that there exists an interval
[z1, z2] C (0, +00) such that

w(z1) =w(z2) =0 and w(s) >0 Vs e (z1,22). (36)

We now prove very precise geometric properties of w in these intervals; what fol-
lows can be extended to intervals where w is negative.

Lemma 11. Let k < 0 and assume that f satisfies (2). Let w be a solution to (1)
defined on [0, +00) and satisfying H(0) > 0 and G(0) = 0. Assume that there
exists an interval [z1, z2] C (0, +00) such that (36) holds. Then the following facts
hold:

1) 0 < w'(z1) < —w'(z2) and there exists a unique m € (z1, z») such that
w'(m) = 0;

(i) w”(z2) <0 < w’(z1), there exists a unique r € (z1, 72) where w” changes
sign, moreover r < m.

Proof. Since H(0) > 0and G(0) = 0,by (31)and (33), we know that 0 < G(0) <
w'(z1)? = G(z1) < G(z2) = w'(z2)2. Hence, 0 < w'(z1) < —w'(z2). Moreover,
w cannot admit two critical points in view of Lemma 10. This proves Item (i). By
(33) we infer that 0 < H(0) < w'(z1)w”(z1) = H(z1) < H(z2) = w'(z2)w” (22)
which, together with the just proved Item (i), shows that w” (z2) < 0 < w”(z;) and
the existence of a first r € (z1, z2) such that w”(r) = 0 and w” changes sign in r.
Lemma 10 states that r < m. So, we just have to prove uniqueness of the point r in
(z1, m). If not, there exists a second point o € (r, m) such that w” (o) = 0 and w”
changes sign in o. Since in r the function w” changes from positive to negative,
we necessarily have w”’(r) < 0. Similarly, we have w”’ (o) = 0. Hence,

wEw”#) 202w (o)w” (o). (37)

Moreover, since w”(s) < 0 for s € (r,0), we have 0 < w/(0) < w/(r) and, in
turn,

k k
023 w'(0)? 2 5 w'(r)?, (38)

with strict inequalities if & < 0. Finally, recalling that (2) implies the monotonicity
of F in [0, 00), since w'(s) > 0 for s € (r,0), we have F(w(r)) < F(w(o)).
Combined with (37) and (38), this gives
k 4 2 / " k / 2
Er) = Fw "+ w@w (r)+ F(w(r)) < T (o)
+w'(0)w" (o) + F(w(0)) = E(0),

which is in contradiction with (29). O

The simple geometric properties of the solution found in Lemma 11 are dis-
played in Fig. 11.
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Fig. 11. Qualitative behavior of the solution w in the interval [z iz j+l]

We now introduce two further energy functions. Let w = w(s) be a local
solution to (1) and let

w//(s)Z

D(s) ;= >

+ F(w(s)), W(s):=w"(s)>— gw’(s)z —w (Hw” (s).
(39)

Then, if f is increasing, we can prove

Lemma 12. Assume (2) and (10). Assume that k < 0 and let w = w(s) be a non-
trivial local solution to (1). Then ® and \V are strictly convex functions. Moreover,
if w admits a local maximum at some m such that w(m) > 0 and H(m) > 0, then
® and V are strictly increasing for s 2 m.

Proof. Note first that (2)—(10) imply that
f()y>0 Vt#0. (40)
By differentiating and by using (1), we obtain

D' (s) = w’(sH)w” (s) + f(w(s)w'(s),
"(s) = w” (5)* — kw" (5)* + f/(w(s)w'(s)*.

By (40) and recalling that k < 0, we obviously have ®”(s) > 0 for almost all s,
except for at most some isolated s where ®”(s) = 0 or where ®” is not defined
(when w(s) = 0). If the local maximum m exists, the assumptions w(m) > 0 and
H(m) > 0 imply that w”'(m) < 0, that is, ®'(m) = 0 and hence ®'(s) > 0 for
all s > m. This proves the statements for ®. Since E(s) = ®(s) — ¥ (s), by (29)
we obtain W/ (s) = ®'(s) and W' (s) = ®"(s), which prove the statements, also,
for W. 0O

Finally, we prove a crucial and somewhat unexpected result. Roughly speaking,
it states that (1) has no solutions eventually of one sign. If k = 0, we recall from
[3, Theorem 4] that a similar result holds by merely assuming (2) and

liminf | f(¢)| > 0. 41
t—=+o00
Proposition 13. Let k > 0 and let f satisfy (2) and (41). If w is a nontrivial global

solution to (1), then w(s) changes sign infinitely many times as s — +00 and as
§ — —o0.
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It is also known [3] that, under the sole assumption (2), this phenomenon may
not occur when k < 0. Moreover, when k < 0 the linear problem studied in Sec-
tion 5 does have global solutions eventually of one sign. These are the reasons we
believe that the next result is somehow surprising.

Lemma 14. Let k < 0 and assume that f satisfies (10) and (11). Let w be a local
solution to (1) such that H(0) > 0 and G(0) = 0. Then w cannot be continued on
[0, +00) as a solution eventually of one sign.

Proof. If k£ = O this statement is known, see Proposition 13. So, take k < 0.
Assume first that there exists o = 0 such that w(s) = 0 for s € [0, +00). If w

admits a local maximum at some m > o, then w(m) > 0 and H(m) > 0, the latter

in view of (33). Then, by Lemma 10, we would have that w changes sign, which is a

contradiction. Therefore, w does not admit a local maximum and, in turn, w admits

alimit £ € [0, co] as s — oo. By Lemma 9 (ii), we necessarily have £ = +4-o0.
Thus we have shown that if w(s) is eventually positive, then

lim w(s) = +o0. (42)
§—+00
In particular, since we have also just seen that w cannot admit a local maximum,
this means that

w(s) =0 Vs2>o. (43)

Next, we study the second derivative. It cannot be that w”(s) < 0 eventu-
ally, since otherwise from (1) and (42) we would obtain w””(s) = —kw” (s) —
f(w(s)) — —oo, implying that w”(s) — —oo and, subsequently, that w(s) —
—00. Therefore, w”(s) > 0 on some interval (s1, s2) with s; > o. If w”(s2) = 0,
then again by (1) we would get that w”” (s3) < 0 and also that w”” remains negative
as long as w” is negative. Hence, w” is concave as long as it remains negative and
therefore it is eventually negative, contradicting what we just said. This shows that
there exists § = o such that

w’(s) >0 Vs >5. 44

This also allows us to strengthen (43) with
w(s) >0 Vs>s7. (45)

By differentiating (1) twice we obtain
w®(s) = —kw""(s) — f" (W' ($)* = f'w)w"(s). (46)

It cannot be that w””(s) < 0 eventually, since otherwise from (10)—(40)—(42)-
(44)—(45)—(46) we would obtain w© (s) < — " (w(s))w'(s)*> < —c for some
¢ > 0, implying that w””(s) — —o0, against (44). Therefore, w””(s) > 0 on some
interval (s1, s7) with s; > 5. If w””’(sp) = 0, then again by (46) we would get
that w® (s5) < 0 and also that w® remains negative as long as w”” is negative.
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Hence, w”” is concave as long as it remains negative and therefore it is eventually

negative, contradicting what we just said. This shows that there exists & such that
w”(s)>0 Vs>o. 47)
By (1) and (47), we readily obtain that kw” (s) + f(w(s)) < 0 forall s > G.

By multiplying this inequality by w’(s) and recalling (45), we obtain

cf_s [;u/(s)2 + F(w(s))i| =kw"(s)w'(s) + f(w(s)w'(s) <0 Vs >0o.

By (11), this proves that there exists ¢; € R such that

k k
S () + L w)PT < Swis) + Fw(s) < e Vs >3
2 p+1 2
Hence, if we divide by w(s)” +1 and we recall (42), we get
1()2
26‘% — 2p < w'(s) 1
kl(p+1) — w(s)P*
By taking the square root and choosing a sufficiently large o > o, this shows that
w’'(s)
= w(s)P+h/2

+o0o(l) Vs>o.

Vs > op.

By integrating over (og, s) this gives

_ 2 1 1
c2s = 00) = »—1 \w(og) P V2~ w@hz)"

and we get a contradiction by letting s — oo. This shows that w cannot be even-
tually positive.

Similarly, by reversing all signs, we can reach a contradiction if w(s) is even-
tually negative. O

7. Proof of Theorem 2

Step 1. Organization of the proof.

Denote by [0, R) the maximal interval of continuation of the local solution
w = w(s). In order to prove that R < 400, we need some delicate estimates, see
Steps 2—-3-4-5 below. Once these estimates are obtained, in Step 6 we prove that
R < +o00. However, before doing this, we need to remark on some preliminary
facts, regardless of whether R is finite or infinite.

Items (i) and (ii) follow from Proposition 1 in the case where R < +o0 and
from Lemma 14 in the case where R = +o0.

Forall jletm; € (zj, z;j+1) be the point where |w(s)| attains its maximum on
[zj,zj+1]and let M; = w(m;). If R < 400, by Proposition 1 we infer that

lim sup |M;| = +o0.

j—o00
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Therefore, there exists a subsequence {m;} C {m;} such that
lim |Mj| = 4o0.
h— 00
In view of (11) and (29) we then infer
lim w”(my)* =2 lim [F(M;) — C] = +00.
h—o00 h—o00

Hence, recalling the definition of G in (30) and noticing that w(mp)w"” (my) < 0,
we get

k
lim G(mp) = — lim [th”(mh) + —Mg] = +00.
h—00 h—00 2

By (33) we then deduce thatlim; g G(s) = +oo without extracting subsequences.
In particular, we get that

j—o00

k
lim G(mj) = — lim | M;jw"(m;) + ~M? | = +oc0 (48)
j—o00 2 J

on the whole sequence {m ;} of maxima of |w(s)|. Using (29) again, we obtain that

[w”(m )| = \J2(F(M;) — C) (49)

which, replaced into (48), proves that

lim |M;| = 400 (50)

Jj—>+00

whenever R < +o00.If R = 400, in what follows we assume that the local solution
w = w(s) can be continued as s — 400 so that w is defined (at least) on [0, 4+00).
By Lemma 14 we know that w(s) changes sign infinitely many times as s — +00.
Note that by (30) and Lemma 9, we have again (48), whereas by (29), we again
have (49). Hence, we obtain (50) in the case R = +00, also.

Since (12) is equivalent to H(0) > 0, by Lemma 9 (ii) we know that there exists
o 2 Osuchthat H(o) > 0and G(o) = 0. Since (1) is autonomous, we may assume
that o = 0. Hence, Lemma 11 applies. We now prove some estimates related to
the points found in Lemma 11. For sake of simplicity, we denote by (z;, zj+1) an
interval where w(s) > 0 and by (z;_1, z;) an interval where w(s) < 0; moreover,
weput M; = w(@m;) > 0and M;_; = w(mj_1) < 0. Clearly the estimates below
can be reversed on intervals where w has the opposite sign.

Step 2. We prove that

lim (r; —z;) =0. (51
j—00 ’
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Assume for contradiction that the claim is false, so thatlim sup;_, . (rj —z;) >
0. Then there exists a > 0 and a subsequence (still denoted in the same way) such
that (r; — z;) = a for all j. By Lemma 9 we know that w’(zj)2 =G(zj) = 400
as j — oo. In turn, by Lemma 11, we know that w’(s) — +oo forall s € [z, )]
as j — oo. Finally, this proves that

w(zj+o)—> 400 Vo e€(0,r; —z;] asj— oo. (52)
Let h(s) := (s — z/-)3(rj — )t By (52) and assumption (11), we infer that

h(zj+o0)f(w(zj+0)) +kh"(zj +o)w(zj+ o)
+h""(zj + o)w(zj + o) > +00
Vo € (0,r; —z;) (53)

as j — oo. Multiply (1) by i(s) and integrate over [z, r;]. Since k, h’, h” vanish
in {z;, r;} and h""(r;) = 0, four integration by parts yield
rj
/ [h(s) f(w(s)) +kh"(s)w(s) + A" (s)w(s)]ds = 0.
Zj
This contradicts (53) unless (51) holds and this contradiction proves the claim of
Step 2.

Step 3. We prove that there exists C1 = C(p, p) > 0 such that if j is sufficiently
large, then

Cy

|M;_ |-/ (54)

.. <
rj—2%j =

In what follows, ¢ denotes a positive constant which depends on p and p and
which may vary from line to line, and also within the same formula. Let

. S —2Zj
h(s) = sin* (n —])
rj—2%j
so that

47 . s — 2z S —2Zj
n(s) = sin® (7 —L ) cos (= ),
rj =z rj =z rj =z
472 . s—2zj . s—2zj
h'(s) == — 3sin? (7 —L ) —4sin* (# / ,
(rj —z;) rj—2zj rj—2zj
873 . s — 2z s —2z;
h"(s) == ———— |3sin (7 L) cos (7 J
(rj = zj) rj =3 rj =2
. s —2z; s —2Zj
—8sin’ (n J ) cos (n J ) ,
rj —2%j rj —2zj

8 4 — 7z .
W) = — [3 —30sin? (n Al ) +32sin* (n u)} :
(rj —zj) Y Y




742 FiLippo GAZZOLA & RAFFAELLA PAVANI

Multiply (1) by h(s) and integrate over [z, r;]. Since h, h’, h”, h’" vanish in
{z, r;}, four integrations by parts yield

/ ' h(s)f(w(s))ds = —/ j[kh”(s) + 1" (s)]w(s) ds. (55)

J

Our purpose is now to estimate the terms in (55). Before doing this, we need
some energy arguments. Since m;_1 is a minimum for w, we have w” (m j—1) >0

so that, by (29), we have w”(m ;j_1) = /2(F(M;_1) — C). Hence, by (50),

" k 2
Gmj_1)=|Mj_|lw (mj_y)— EMj_l

3
Z |Mj1|\/2(F(Mj—1) = C) 2 c[Mj—1| 7,

where the last inequality follows from assumption (11). By taking into account
(33), we then infer that

pi3
w'(2)) = Gzj) > Gmj1) Z elMj| .
Since w(s) is convex in [z, 7;], see Lemma 11, we then deduce
p+3
w(s)zc|Mj_1| (s —zj) Vselzj,rjl

In particular, by (11) we also have

(3=

F(s) Z pws)? ZelMjy| + (s—z)P'wls) Vs elzj,rl.  (56)

Next, we estimate

_kh//(s) _ h////(s)

4k? —z; —z;
_—712 [3sin2 (n Ty ) — 4sin* (7‘[ S—Z’):|
(rj —zj) rj—2zj rj—2zj

8 4 5. .
R [3—30s.in2 (n — ) +32sin’ (n S )]
(rj —zj) rj—zj rj—zj

12|k|7? -z 8t —zj
< £ sin? ( 7 ST + il —3+30sin® (7 2TE
(rj —z;)? ri—zj)  (rj—zp)* rj—2zj
2474 —2z;
< |:—l+llsin2 (71 u)} (57)
(rj —z;) rj—2zj

where the last inequality follows from (51), provided j is sufficiently large. By
inserting (56) and (57) into (55), we obtain

et3ye-n [T, §—2Z; _
IMj_i| " 4 / sin* (n J ) (s —zj)? Lw(s) ds
Zz

| ri —2j

< ;4/ ' [—1 4 11sin? (71 ﬂ)} w(s)ds.  (58)
(rj —z))* Jz rj =2
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Let
1 1
y = — arcsin —— =~ 0.0975
T

V11

and notice that

. s —2zj
11sin? (n #) <1 Vselzj,zj+yrj—zplUlrj —yrj —z)),rjl.
JT %

Therefore, from (58) we deduce

3= [TITYEi=) s —2z; _
M| 4 / sint (7 —L ) (s — 2))" " w(s) ds
Z

ity (rj—z;) rj—2j

c rj=y(rj—z;) S —7;
[—1 + 11 sin? (n / )] w(s)ds.  (59)

= _ 4 .
(rj —zj) 2j+y(rj—z;) rj—2j

On the new interval of integration [z; + y(r; — z;),r; — y(rj — z;)], we have
uniform bounds such as

. 1 .
sin4(7ts—zj)>— —1—|—llsin2(7ts Z/)SIO.

ri—zj) 121 ri—zj)

Hence, from (59) we may finally obtain

GDe=h 1 rj=y(rj=z;)
IMj—1l 4y oy —z))? / w(s)ds
zjty(rj—z;)

-y [TiTY i) —1
SIMiq|® / (s —zj)P " w(s)ds

zj+y(rj—z;)

¢ rj=y(rj=zj)
< — w(s)ds
~ -zt ’
J J zj+y(rj—z;)

which we rewrite as (54) for some C; > 0 depending only on p and p which appear
in (11).

Step 4. We prove that there exists C; = C2(p, p) > 0 such that if j is sufficiently
large, then

C>

— . (60)
M7

Zj41—mj =
Let h(s) := (s — mj)2(2j+] — 5)3 and note that
h(mj) =h'(m;) =h(zj41) = h'(zj11) = h"(zj41) = 0. (61)
For all £ € {0, 1,2, 3,4} let h'© denote the ¢-th derivative of h. Clearly, h® is a
linear combination of polynomials such as (s —m ;)?(z 41 —s5)? witha+b = 5—¢.
Therefore,

Ve €{0,1,2,3,4) 3cp >0 suchthat [hO(s)| < cp(zjpr —m;)>"

Vs € [mj, zjy1] (62)
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Recall that w(m;) = M; and w(zj4+1) = w'(m;) = 0; then, by (61), four
integrations by parts yield

Zj+1 Zj+l
—/ w” (s h(s)ds = —/ w(s)h""(s)ds —h""(m;)M;,
mj mj
so that, by (62),
AL Lt 5
—/ w” (s)h(s)ds = ca(zj41 — mj)/ w(s)ds +c3(zj41 —mj)"M;
mj nmj
< (e3+ea)(zjp1 —mj) M. (63)

Similarly, two integrations by parts yield

Zj41 Zj+1
e [T s =~k [T won (5)ds = calkiCejar )t

mj mj
(64)
In view of Lemma 11 we know that w is concave over [m , zj11] so that
M;j(zj+1 =)
Zj+1 —mj

w(s) 2 Vs €[mj, zj41].

Then, by assumption (11), we infer that

Fas) 2 pus)? 2 pmp LD

Vs € mj,zix+1].
Jo%j+l
T (zjp1 —mj)P

Therefore,
Zj+1 pMP Zj+1
Fw(s)h(s)ds =2 ———— (s —mj)*(zjs1 — )PP ds
m; @jr1r =mpP Jm;
,OMP Zj+1—mj
(a=Zj+1—S)=m/o 0p+3(zj+1—mj—0)2ds
20M} 6 65
= Zj+1 —Mmj).
PrHp I re G T ©>

Multiply (1) by A (s), and integrate over [m , z;+1] to obtain
Zj+1 Zj+l1 Zj+l1
/ Fw(s)h(s)ds = —/ w” (s)h(s)ds — k/ w” (s)h(s) ds.
mj mj mj
By plugging the estimates (63), (64), (65) into this identity, we get
p
2pMj

P+dHp+5(p+06)
S +ea)@jrr —m)>Mj + calkl(zj41 —mj)*M;

6
(Zj+1 —mj)
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that is,
2,0MJ’?_1
(p+HpP+35(p+06)

By solving this biquadratic algebraic inequality, we infer that

(Zjp1 —mj)* — calkl(zj41 —mj)? — (3 +cq) 0.

calkl + /32 + 8pM? (5 + ca) o
4,0Mf_l
o= ((p+4(p+35(p+6).

w, Wwith

(zjg1 —mj)” =

Finally, this yields (60) for some C> > 0 depending only on p and p which appear
in (11).

Step 5. We prove that there exists C3 = C3(p, p) > 0 such that if j is sufficiently
large, then

C3
e < _
m;j ry = M<p_1)/4‘ (66)
J
We proceed as in Step 4 but with a different test function.
Let h(s) := (s — rj)4(mj — )2 and note that
h(mj) =h'(mj) = h(rj) =h'(rj) =h"@r;) =h"(@rj) =0. (67)

For all £ € {0, 1,2, 3,4} let h© denote the ¢-th derivative of A. Clearly, 1) is a
linear combination of polynomials such as (s —r;)“ (m; — s)b witha+b =6—¢.
Therefore,

Ve € {0,1,2,3,4} 3e, >0 such that [AO(s)] £ com; —rj)®"

Vs € [rj, m;j]. (68)

Recall that w(m ;) = M; and w'(m ;) = 0; then, by (67), four integrations by
parts yield

_/ ! w” (s)h(s)ds = —/ ! w(s)h""(s)ds +h" (mj)M;,

J J

so that, by (68),

m

_/ J w////(s)h(s) ds g C4(mj _rj)2

rj
m;

x/ w(s)ds +e3(m; —r))>M; < (c3+ea)mj —rj)>M;.  (69)

r

Similarly, two integrations by parts yield

—k/ ! w”(s)h(s)ds = —k/ ! w(s)h"(s)ds < calk|(mj —r;)>M;.  (70)

j J
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By Lemma 11 we know that w is concave over [r, m ], so that (this inequality
is far from being optimal!)

Mj(s —rj)
mj—rj

w(s) = Vs € [rj,mjl.

Then, by assumption (11), we infer that

Fw(s) = pwis)? = pu? L=

_— Vs elri,mi].
/(mj—rj)" [] ]]

Therefore,
mj oM? mj
/ " Fw(s)h(s)ds = —’/ "5 — )P m; — )% ds
v (mj—rp? J,
poM? mj—rj
(G=s—rj)={— _/mp'/o D P my - ) ds
J
2pM] ; |
= =), 7
Cinpreprn T 71

Multiply (1) by A(s) and integrate over [, m ;] to obtain

/mj Ffw(s)h(s)ds = —/mj w”(s)h(s)ds — k/mj w” (s)h(s)ds.

J J
By plugging the estimates (69), (70), (71) into this identity, we get
p
20M f

(P+5p+6)(p+7)
S (3 +ca)mj —r)>Mj + calkl(mj —r;)> M;,

(mj—rj)

that is,

2,0M]17_1
P+SpP+6)(p+7)

(mj —rj)* = ealkl(mj —rj)* = (c3 +ca) £ 0.

By solving this biquadratic algebraic inequality, we infer that

Calkl +/e3k2 + 8oM ] (e + ca) o
4,0M§7_1
©=(p+5)(p+6)(p+7.

2 <

(mj—rj) = w, with

Finally, this yields (66) for some C3 > 0 depending only on p and p, which appear
in (11).
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Step 6. We show that R < +o0.
By (12) we may apply Lemma 12 to obtain, for all j € N,

F(Mj) = F(w(mj)) > F(w(rj)) = @(r))
w//(mj—l)z

> ®(mj_y) = >

+ Fw(mj_1) = 2F(M;_1) = C. (72)
the latter equality being a consequence of

" . 2
Emj_1) = F(w(mj_1)) — % —c.

which holds in view of (29). In particular, (72) shows that
Jj = F(M;j) is strictly increasing and  lim F(M;) = +oo. (73)
J—>00
By iterating (72) we find F (M) > 2/[F(Mp) — C]+ C forall j > 1. In turn, by
(73) we may relabel the indices j (in such a way that F(M() > 2C) and obtain
F(Mj)>2j*1F(Mo) VjeN. (74)

Moreover, by using (11), (72) gives

o
g+1 ?HJF%MJ["H = F(Mj) > 2F(Mj-) = C
2
> Lyt e
p+1

so that, by (73) and by possibly relabeling j, we infer that
|M;17HE = (B, p) M PH VY eN. (75)

By combining (75) with (54)—(60)—(66)—(74), we readily obtain that

K1 c
mjp—mj—1 = |M;_{|(P=D/4 = [F(M;_,)](p=—D/4p+D)
1 =l
[ P>
=N (z(p—l)/4(p+1>) vizl (76)

for some k1 = «1(B, p, p) > 0. This proves the first part of (13). Finally, by
combining (75) with (76), we obtain

o0 0 .
1 .]
R=mo=> mjs1—mp<ed (m) <o
j=0 /=0

p—1
since the geometric series has ratio (%) 4r+D < 1. Therefore, R < +o00 and the
solution blows up in finite time.
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Step 7. We prove the second part of (13). First of all, we recall the well-known
Poincaré-type inequalities

2 2 Al
lullo < (zjr1 —zp)lu'll2 £ (zj+1 —z) Nu"l - Yu € H N Hy(zj, 2j+1),

(77)
where || - || denotes the L2(z j» Zj+1)-norm, whereas H 2 and H& represent the
usual Sobolev spaces. Next, we observe that, upon integration, (11) yields

o B
F() S ——t]7 4+ Pt vreR. 78
()_q+1|| erl|I (78)

We may now start the proof of the estimate. Some integrations by parts and (1)
yield

Zj+1 Zjt+1
/ w' (s)w” (s)ds = —/ w(s)w” (s) ds
z Zz

Zj41
=/ ' w(s)[kw” (s) + f(w(s))]ds

Zj+1 Zj+1
—k/ u/(s)2ds+/ f(w(s)w(s)ds.

J J

Hence, if we integrate (28) over [z, zj+1] we obtain

Zj+1
2 [ iP@) + fwenue)ds
Zj
Zj+ ) )
=/ [w”(s)” + kw'(s)71ds +2C(zj4+1 — 2)),
Zj
where C is as in (29). Using (11), (77), (78), the latter identity yields the estimate

2[R+l 2 [Zj+l
20112 lw(s)|9H ds + Zﬂi/ lw(s)[P*+! ds
g+1 zZj p+1 Zj

> (1 +o(1)) /Zj+1 w”(s)?ds 4+ o(1)

L+o(l) o
T @i )t

V

w(s)2 ds + o(1),
where o(1) are infinitesimals due (76). We may then further estimate
_ [HH 1+o0( Lyt
g +omim] ™ [Tuerasz S0 [T a2 e
Zj @jr1—z))% Jy;
which finally gives
1

-1
cB.pM!T Z —————
I (zjy1 —z)*
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Step 8. Conclusion.

Since the above proof of Theorem 2 is quite lengthy and delicate, let us indicate
the exact points where the statements were reached.

The fact that R < +o0 is proved in Step 6. Statements (i) and (ii) are proved
in Step 1. Statements (iii) and (iv) follow from Lemma 11. Statement (v) follows
from (50) and (73). Statement (vi) is proved in (76) (first estimate) and in Step 7
(second estimate).

8. Proof of Theorem 3

By Proposition 1, we know that (8) holds. Denote by [z}, z;4+1] an interval of
positivity (or negativity) for the solution w and note that two integrations by parts
yield

/ I w(s) ds = / I () ds — [ @w')] "

) . Zj
j j J

Hence, if we multiply (1) by w(s) and integrate over (z;, z4+1), we obtain

Zj41 Zj+1 ) Zj+1
[w”(s)w/(s)]z'. =/ w” (s) ds+k/ w” (s)w(s) ds

+ / " Fw(s)ws) ds. (79)

On the other hand, if we integrate the energy £ in (28) over (z;, 2+1), by (29)
we get

1" / Lj+l 3 [w+ 2 k [+t
[w (sw (s)]z. =C(zj+1 —zj) + E/ w’(s)“ds + 5/ w” (s)w(s) ds
- i j
- / Fw(s)) ds. (80)

By combining (79) with (80) we infer

Zj+1 1 [%+! 5

/. (f(w(S))w(S) + F(w(S))) ds =C(zj41 —2j) + 5/. w”(s)* ds
j k [Fit+] '

—5/ w” (s)w(s) ds. 81)

J

Next, we estimate

A

1(j) =

Zj+l
/ w” (s)w(s) ds
2

( w(s)|? )
X | — ds,
F )]

Zj+1 ﬁ
< / W' @I(F )W)
Zj
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so that, by Holder’s inequality,

1()) é(/zj+

+J

[ ( w(s)!” ) A
X —_ ds .
o @)l

Next, we use (11) to estimate further

1

1 2 Zj+1 l’%
w” (s)? ds) (/ Fw(s)w(s) ds)

*J

1

i — ppi_l Jj+ 2 J+ ﬁ
1(j) = M (/Z 1 w”(s)zds) (/Z l f(w(s))w(s)ds) .

P p+1 j j

In turn, by Young’s inequality, we get

2

p—1 2
: — 7 :)2(p+Dh Zj+1 Zj+1 p+1
1) < BH =) / w'(s)2ds + / Fw(s)w(s)ds

2p P+l Zj Zj

Recalling that p > 1, we have thus proved that

I1(j)= 0(/ZH1 w” () ds) + 0(/11&r1 f(w(s)w(s) ds)
zj zj

J

as j — oo. Inserting this estimate into (81) we get

Zj+1 Zj+1
/. : (f(w(S))w(S) + F(w(S))) ds + o(/ f(w(S))w(S)dS)

J

1 [+ 5 Zj+1 5
= o(l) + E/ w’(s)*ds + o / w’(s)*ds ).
Zj zj

J

The result then follows by letting j — oo.
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