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a b s t r a c t

Contrary to the second-order case, biharmonic heat kernels are sign-changing. A deep
knowledge of their behaviourmayhowever allowus to prove positivity results for solutions
of the Cauchy problem. We establish further properties of these kernels, we prove some
Lorch–Szegö-type monotonicity results and we give some hints on how to obtain similar
results for higher order polyharmonic parabolic problems.
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1. Introduction

Consider the following Cauchy problem for the biharmonic heat equation{
ut +∆2u = 0 in Rn+1

+
:= Rn × [0,∞)

u (x, 0) = u0(x) in Rn,
(1)

where n ≥ 1 and u0 ∈ C0 ∩ L∞ (Rn). It is well known (see [1] and the references therein) that (1) admits a unique global in
time solution explicitly given by

u(x, t) = αnt−n/4
∫

Rn
u0(x− y)fn

(
|y|
t1/4

)
dy, (x, t) ∈ Rn+1

+
.

Here αn > 0 denotes a suitable normalization constant and

fn(η) = η1−n
∫
∞

0
e−s

4
(ηs)n/2J(n−2)/2(ηs)ds, (2)

where Jν denotes the νth Bessel function of the first kind.
Contrary to the second-order heat equation, no general positivity preserving property holds for (1), namely the positivity

of the initial datum u0 may not imply positivity (in space and time) for the solution u = u(x, t) of (1). However, a careful
analysis of the kernels fn in (2) enables us to obtain some restricted and somehow hidden positivity, see [1,2]. This property
is called eventual local positivity and reflects the fact that, for suitable initial data, the solution of (1) becomes positive on
compact domains of Rn for sufficiently large time t and the time depends on the compact set itself.
Let us also mention that positivity for (1) with a source term (namely ut + ∆2u = f ) has been studied in [3] for linear

problems when f = f (x, t) and in [1] for nonlinear problems when f = |u|p−1u for p > 1+ 4/n (the so-called super-Fujita
case, see [4]). See also [5] for estimates, existence and decay of global solutions. We also refer [6,7] for related and blow-up
results in the case f = |u|p.
A better understanding of the behaviour of the kernels will certainly allow us to reach stronger results on positivity

of solutions to (1). This is precisely the first goal of the present paper. After recalling in Section 2 some known results, in
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Section 3 we establish some new features of the fn-functions. These features enable us to reach the second purpose of this
paper, namely Lorch–Szegö-type monotonicity results for the f -functions, see Section 4. This means that the sequence of
moduli of certain weighted integrals of fn between consecutive zeros of fn is monotonically decreasing. Let us briefly explain
how suchmonotonicity results may be used in order to obtain eventual local positivity. If the initial datum u0 is positive and
behaves like |x|−β (0 < β < n) at∞ (see (9)), it was proved in [1] that one should know that∫

∞

0
η−β

[
ηn−1fn(η)

]
dη =

∫
∞

0
ηn−β−2 [ηfn(η)] dη > 0. (3)

It is this constant times t−β/4which locally gives the asymptotic behaviour for t →∞ of the solution of the Cauchy problem.
Belowwewill prove a Lorch–Szegö-typemonotonicity result for η 7→ ηfn(η), (n ≥ 2), so that positivity of the above integral
is immediate for β ∈ [(n− 2), n). In [1], inequality (3) (and more) was proved without referring explicitly to Lorch–Szegö-
type results, but we think that our present approach gives a more natural interpretation of certain eventual local positivity
features.
Finally, in Section 5 we give hints on how to extend some properties of the kernels and their consequences to

polyharmonic heat equations.

2. Preliminaries and notations

Let us first recall that thanks to Galaktionov–Pohožaev [8], we know that the f -functions have exponential decay at
infinity. More precisely, for any integer n ≥ 1 there exist K = Kn > 0, µ = µn > 0 such that

|fn(η)| ≤ K exp
(
−µη4/3

)
for all η ≥ 0. (4)

Then, we recall some properties of the f -functions proved in [1]. Firstly, a recursion formula holds:

f ′n(η) = −η fn+2(η) for all n ≥ 1. (5)
Moreover, fn satisfies the following third-order differential equation (see [1, Theorem 6])

f ′′′n (η)+
n− 1
η
f ′′n (η)−

n− 1
η2
f ′n(η)−

η

4
fn(η) = 0, (6)

which we shall also exploit in the following equivalent form

(∆fn)′ (η) =
η

4
fn(η). (7)

Thanks to (5) and (6), in [1] the following result was proved∫
∞

0
ηn−1−β fn(η)dη > 0 for all integer n ≥ 1 and all β ∈ [0, n). (8)

In turn, (8) was used to prove the eventual local positivity property for (1) with initial data of the kind

u0(x) =
1

g(x)+ |x|β
where g ∈ C0(Rn,R+) satisfies lim

|x|→∞

g(x)
|x|β
= 0 (9)

for some β ∈ [0, n). By eventual local positivity we mean that the solution of (1) is (locally) positive on compact domains
of Rn for (eventual) sufficiently large time t . The proof of (8) is quite lengthy and delicate.
It is also shown in [1, Theorem 7] that fn(η) changes sign infinitely many times as η→+∞. For a fixed n, we denote by

{ζj} the sequence of all the zeroes of fn:
fn(ζj) = 0 0 < ζ1 < ζ2 < · · · .

In some situations, we need to distinguish between ‘‘ascending’’ zeroes (where f ′n > 0) and ‘‘descending’’ zeroes (where
f ′n < 0). To this end, we denote by Pk (resp. Nk) the successive intervals, where fn is positive (resp. negative) so that we have

[0,∞) =
∞⋃
k=1

(
Pk ∪ Nk

)
.

Moreover, we write
z+k := sup Pk = infNk, z−k := supNk = inf Pk+1 (k ∈ N)

so that ∪k{z±k } ≡ ∪j{ζj} are the zeroes of fn. Let
µk ∈ Pk be such that fn(µk) = max

η∈Pk
fn(η)

mk ∈ Nk be such that fn(mk) = min
η∈Nk

fn(η).

In particular, f ′n(µk) = f
′
n(mk) = 0 and we know that

0 = µ1 < z+1 < m1 < z
−

1 < µ2 < z+2 < m2 < z
−

2 < · · · .
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3. Behaviour of the f -functions at some special points

3.1. Behaviour at zeroes

Proposition 1. Assume that n ≥ 4. Then, for all j ≥ 1 we have ζj|f ′n(ζj)| > ζj+1|f ′n(ζj+1)|.

Proof. We use (7) and obtain, observing that fn(ζj) = fn(ζj+1) = 0:

−
1
2

(
ζ 2j+1f

′

n(ζj+1)
2
− ζ 2j f

′

n(ζj)
2)
= −

1
2

∫ ζj+1

ζj

(
η2f ′n(η)

2)′ dη
= −

∫ ζj+1

ζj

(
ηf ′n(η)

2
+ η2f ′n(η)f

′′

n (η)
)
dη

= (n− 2)
∫ ζj+1

ζj

ηf ′n(η)
2dη −

∫ ζj+1

ζj

η2f ′n(η)∆fn(η)dη

= (n− 2)
∫ ζj+1

ζj

ηf ′n(η)
2dη + 2

∫ ζj+1

ζj

ηfn(η)∆fn(η)dη +
∫ ζj+1

ζj

η2fn(η)(∆fn)′(η)dη

= (n− 4)
∫ ζj+1

ζj

ηf ′n(η)
2dη + 2(n− 2)

∫ ζj+1

ζj

fn(η)f ′n(η)dη +
1
4

∫ ζj+1

ζj

η3fn(η)2dη

= (n− 4)
∫ ζj+1

ζj

ηf ′n(η)
2dη +

1
4

∫ ζj+1

ζj

η3fn(η)2dη > 0

since we assume that n ≥ 4. �

In lower dimensions one has a slightly weaker statement:

Proposition 2. For any n ≥ 1 and any j ≥ 1 one has |f ′n(ζj)| > |f
′
n(ζj+1)|.

Proof. The differential equation (7) directly shows:

0 <
∫ ζj+1

ζj

η

4
fn(η)2dη =

∫ ζj+1

ζj

fn(η)(∆fn)′(η)dη = −
∫ ζj+1

ζj

f ′n(η)∆fn(η)dη

= −

∫ ζj+1

ζj

f ′n(η)f
′′

n (η)dη − (n− 1)
∫ ζj+1

ζj

f ′n(η)
2

η
dη ≤ −

1
2
f ′n(ζj+1)

2
+
1
2
f ′n(ζj)

2

and the statement follows. �

3.2. Behaviour at critical points

Weobserve first that in successive localmaxima andminima, the f -functions are decreasing and increasing, respectively.

Proposition 3. For any n ≥ 1 and k ≥ 1 we have

fn(µk) > fn(µk+1), fn(mk) < fn(mk+1).

Proof. The statement follows directly from the Lorch–Szegö-type Theorem 1, which will be proved below, and integrating
the recurrence relation (5). �

Proposition 4. For all n ≥ 2 and all k ≥ 1 we have |f ′′n (µk)| > |f
′′
n (mk)| > |f

′′
n (µk+1)| > 0. For all k ≥ 1 we have f

′′

1 (µk) < 0
and f ′′1 (mk) > 0.

Proof. Assume first that n ≥ 2. Since different f -functions are involved in the proof, we denote here µnk , m
n
k and µ

n
k+1 in

order to emphasize their dependence on n. In view of the recursion formula (5), we know that

fn+2(µnk) = fn+2(m
n
k) = fn+2(µ

n
k+1) = 0. (10)

Since n+ 2 ≥ 4, by Proposition 1 we then obtain

µnk |f
′

n+2(µ
n
k)| > m

n
k |f
′

n+2(m
n
k)| > µnk+1|f

′

n+2(µ
n
k+1)|. (11)

By differentiating (5), we get f ′′n (η) = −fn+2(η)− ηf
′

n+2(η). This, combined with (10) and (11) gives

|f ′′n (µ
n
k)| = µ

n
k |f
′

n+2(µ
n
k)| > m

n
k |f
′

n+2(m
n
k)| = |f

′′

n (m
n
k)| > µnk+1|f

′

n+2(µ
n
k+1)| = |f

′′

n (µ
n
k+1)|.
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The first two inequalities in the statement (for n ≥ 2) are so proved. The last one holds since if we would have equality we
would violate |f ′′n (µk+1)| > |f

′′
n (mk+1)|.

Nowassume that n = 1. Then (6) tells us that f ′′′1 (η) < 0 forη ∈ (z
+

k , z
−

k ) so that themapη 7→ f ′′1 (η) is strictly decreasing.
Clearly, f ′′1 (mk) ≥ 0; if f

′′

1 (mk) = 0, then the just mentioned monotonicity would imply f
′′

1 (η) < 0 for η ∈ (mk, z−k ],
contradicting the fact thatmk is a relative minimum for f1. Similarly, one may proceed to show that f ′′1 (µk) < 0. �

Proposition 5. Let n ≥ 1 and let 0 < α < β be two critical points for fn. Then the following two identities hold:

1
4

∫ β

α

ηfn(η)dη = f ′′n (β)− f
′′

n (α),

1
4

∫ β

α

ηn−1fn(η)dη = −2(n− 2)
∫ β

α

ηn−4f ′n(η)dη + β
n−2f ′′n (β)− α

n−2f ′′n (α) ;

when n ≥ 3, the second identity also holds if α = 0.

Proof. An integration by parts yields∫ β

α

f ′′n (η)
η
dη =

∫ β

α

f ′n(η)
η2
dη.

The first identity then follows by integrating (6) over [α, β].
Next, notice that further integrations by parts yield∫ β

α

ηn−2f ′′′n (η)dη = (2− n)
∫ β

α

ηn−3f ′′n (η)dη + β
n−2f ′′n (β)− α

n−2f ′′n (α),∫ β

α

ηn−3f ′′n (η)dη = (3− n)
∫ β

α

ηn−4f ′n(η)dη.

The second identity then follows by multiplying (6) by ηn−2 and integrating. �

By combining Propositions 4 and 5 we immediately obtain

Corollary 1. Let n ≥ 2. Then, for any k ≥ 1, we have:∫ µk+1

µk

ηfn(η)dη > 0.

Another interesting property which holds on critical points is the following:

Proposition 6. Let n ≥ 1 and let 0 < α < β be two critical points for fn. Then

4f ′′n (β)
2
+ (2− n)fn(β)2 < 4f ′′n (α)

2
+ (2− n)fn(α)2.

Proof. By using (7) and integrating by parts we find[
4f ′′n (β)

2
+ (2− n)fn(β)2

]
−
[
4f ′′n (α)

2
+ (2− n)fn(α)2

]
=
[
4∆fn(β)2 + (2− n)fn(β)2

]
−
[
4∆fn(α)2 + (2− n)fn(α)2

]
=

∫ β

α

[
4∆fn(η)2 + (2− n)fn(η)2

]′
dη

=

∫ β

α

[
8∆fn(η)(∆fn)′(η)+ 2(2− n)fn(η)f ′n(η)

]
dη

= 2
∫ β

α

[
ηfn(η)∆fn(η)+ (2− n)fn(η)f ′n(η)

]
dη

= 2
∫ β

α

[
ηfn(η)f ′′n (η)+ fn(η)f

′

n(η)
]
dη

= 2
∫ β

α

(ηf ′n(η))
′fn(η)dη

= −2
∫ β

α

ηf ′n(η)
2dη < 0.

This proves the statement. �
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Proposition 7. Let n ≥ 1 and let k ≥ 1. Then,∫ µk+1

mk
ηn−1fn(η)dη < 0,

∫ mk+1

µk+1

ηn−1fn(η)dη > 0.

If n ≥ 3, then the second inequality also holds when integrated over [µ1,m1] = [0,m1].

Proof. Since the second inequality follows similarly, we only prove the first one.
Consider first the case n = 1. We have∫ µk+1

mk
f1(η)dη =

1
z−k

∫ z−k

mk
z−k f1(η)dη +

1
z−k

∫ µk+1

z−k

z−k f1(η)dη

<
1
z−k

∫ z−k

mk
ηf1(η)dη +

1
z−k

∫ µk+1

z−k

ηf1(η) dη =
1
z−k

∫ µk+1

mk
ηf1(η)dη

=
4
z−k

(
f ′′1 (µk+1)− f

′′

1 (mk)
)
< 0,

where we used Proposition 5 in the last equality and Proposition 4 for the last inequality.
Now consider the case n ≥ 2. Because of Proposition 2 and (5) we have f ′n(η) > 0 for all η ∈ (mk, µk+1). Moreover, by

Proposition 4 we know that µn−2k+1 f
′′
n (µk+1) < 0 andm

n−2
k f ′′n (mk) > 0. Therefore, by Proposition 5 we get

1
4

∫ µk+1

mk
ηn−1fn(η)dη = −2(n− 2)

∫ µk+1

mk
ηn−4f ′n(η)dη + µ

n−2
k+1 f

′′

n (µk+1)−m
n−2
k f ′′n (mk) < 0.

The first inequality is so proved also for n ≥ 2. �

3.3. Behaviour of the second derivative

Proposition 8. For any n ≥ 1 and any k ≥ 1, the following two facts hold:

f ′′n (η) < 0 and f ′′′n (η) > 0 for all η ∈ (z−k , µk+1],

f ′′n (η) > 0 and f ′′′n (η) < 0 for all η ∈ (z+k ,mk].

Proof. Fix k ≥ 1 and take η ∈ (z−k , µk+1); then, fn(η) > 0 and f
′
n(η) > 0. Using (6) we then obtain

f ′′′n (η)+
n− 1
η
f ′′n (η) > 0 for all η ∈ (z−k , µk+1). (12)

Since µk+1 is a maximum point for fn, by Proposition 4 we infer that f ′′n (µk+1) < 0. By continuity, there exists η < µk+1
such that f ′′n (η) < 0 for all η ∈ (η, µk+1]. The first statement follows if we show that η ≤ z

−

k . For contradiction, assume
that η > z−k . Then, we would have f

′′
n (η) = 0 and f

′′′
n (η) ≤ 0 since f

′′
n becomes negative for η > η. This contradicts (12).

Therefore, f ′′(η) < 0 for all η ∈ (z−k , µk+1). By using (6) again, we then also infer that f
′′′(η) > 0 for all η ∈ (z−k , µk+1].

By reversing all the signs, we obtain similarly the statement in (z+k ,mk]. �

When n = 1 we have a more precise description of flex points:

Proposition 9. For any k ≥ 1 there exists a unique ηk ∈ [µk,mk] and a unique ηk ∈ [mk, µk+1] such that f ′′1 (ηk) = f
′′

1 (η
k) = 0.

Moreover, ηk ∈ (µk, z+k ] and η
k
∈ (mk, z−k ].

Proof. Since the proofs of the two statements are similar, we only prove the first one. By Proposition 4 we have f ′′1 (µk) < 0
and f ′′1 (mk) > 0. Therefore, the equation f

′′

1 (η) = 0 has an odd number of solutions in (µk,mk). By Proposition 8 the equation
f ′′1 (η) = 0 has no solutions in (z

+

k ,mk]. Assume for contradiction that f
′′

1 (η) = 0 has at least three solutions in [µk, z
+

k ].
Then, in a descending flex point η∗ ∈ (µk, z+k ) we have f

′′

1 (η
∗) = 0 and f ′′′1 (η

∗) ≤ 0. This contradicts (6) since f1(η∗) > 0.
�

3.4. Integral properties on intervals containing 0

Proposition 10. For all n ≥ 1 and all γ > −1 the following implication holds:∫ a

0
ηγ+2fn+2(η)dη ≥ 0 for all a > 0 H⇒

∫ a

0
ηγ fn(η)dη ≥ 0 for all a > 0.
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Proof. In order to prove the statement it suffices to show that if the first inequality is true, then∫ z−k

0
ηγ fn(η)dη ≥ 0 for all k ≥ 1.

By integrating by parts and (5) we have∫ z−k

0
ηγ fn(η)dη = −

1
γ + 1

∫ z−k

0
ηγ+1f ′n(η)dη =

1
γ + 1

∫ z−k

0
ηγ+2fn+2(η)dη ≥ 0

and the statement follows. �

Proposition 11. For all n ≥ 1, all k ≥ 1 and all γ > −1 the following identity holds:

1
4

∫ z−k

0
ηγ+4fn(η)dη = (γ + 1)(γ + 3)(n− γ − 3)

∫ z−k

0
ηγ fn(η)dη + (z−k )

γ+3∆fn(z−k )− (γ + 3)(z
−

k )
γ+2f ′n(z

−

k ).

Proof. Using (7) and several integrations by parts yield

1
4

∫ z−k

0
ηγ+4fn(η)dη =

∫ z−k

0
ηγ+3(∆fn)′(η)dη

= −(γ + 3)
∫ z−k

0
[ηγ+2f ′′n (η)+ (n− 1)η

γ+1f ′n(η)]dη + (z
−

k )
γ+3∆fn(z−k )

= (γ + 1)(γ + 3)(n− γ − 3)
∫ z−k

0
ηγ fn(η)dη + (z−k )

γ+3∆fn(z−k )− (γ + 3)(z
−

k )
γ+2f ′n(z

−

k ).

This proves the statement. �

4. Lorch–Szegö-type monotonicity results for the f -functions

Theorem 1. For any n ≥ 1 and k ≥ 1 we have that∫ z−k+1

z−k

ηfn(η)dη > 0 and
∫ z+k+1

z+k

ηfn(η)dη < 0.

If additionally n ≥ 2 then we also have that∫ z−1

0
ηfn(η)dη > 0.

Proof. We first claim that for all k ≥ 1 we have

∆fn(z−k ) < 0, ∆fn(z+k ) > 0. (13)

To this end, we remark that (7) shows that ∆fn is strictly increasing on
⋃
∞

k=1 Pk and strictly decreasing on
⋃
∞

k=1 Nk. In the
local minima mk ∈ Nk we have that ∆fn(mk) = f ′′n (mk) ≥ 0 and so for z

+

k = infNk we conclude that ∆fn(z
+

k ) > 0.
Analogously, µk+1 ∈ Pk+1,∆fn(µk+1) = f ′′n (µk+1) ≤ 0, z

−

k = inf Pk+1,∆fn(z
−

k ) < 0. Hence, (13) is proved.
Next, we show that

∆fn(z−k ) < ∆fn(z−k+1) < 0. (14)

In order to prove (14), we multiply (7) by∆fn. Then, by integrating over (z−k , z
−

k+1)we obtain:[
(∆fn(η))2

]z−k+1
z−k
= 2

∫ z−k+1

z−k

∆fn(η)(∆fn)′(η)dη

=
1
2

∫ z−k+1

z−k

ηf ′′n (η)fn(η)dη +
n− 1
2

∫ z−k+1

z−k

f ′n(η)fn(η)dη

= −
1
2

∫ z−k+1

z−k

ηf ′n(η)
2dη < 0.

So,∆fn(z−k )
2 > ∆fn(z−k+1)

2. Together with (13), this proves (14).
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Wemay now obtain the first statement of Theorem 1 from the differential equation (7) by integration:

1
4

∫ z−k+1

z−k

ηfn(η)dη =
∫ z−k+1

z−k

(∆fn)′(η)dη = (∆fn)(z−k+1)− (∆fn)(z
−

k ) > 0.

In the last step we made use of (14). The inequality
∫ z+k+1
z+k

ηfn(η)dη < 0 may be proved similarly.

Now assuming n ≥ 2 and integrating over (0, z−1 )we obtain:

[∆fn(η)]
z−1
0 = 2

∫ z−1

0
∆fn(η)(∆fn)′(η)dη

=
1
2

∫ z−1

0
ηf ′′n (η)fn(η)dη +

n− 1
2

∫ z−1

0
f ′n(η)fn(η)dη

= −
1
2

∫ z−1

0
ηf ′n(η)

2dη +
n− 2
2

∫ z−1

0
f ′n(η)fn(η)dη

= −
1
2

∫ z−1

0
ηf ′n(η)

2dη −
n− 2
4
fn(0)2 < 0,

so that

∆fn(0) < ∆fn(z−1 ) < 0.

The last statement of Theorem 1 now follows with the same argument as above. �

When starting integration from η = 0, the following result holds:

Theorem 2. Let n ≥ 3 and assume that h ∈ C1(0,+∞) satisfies h(η) > 0, h′(η) ≤ 0 for all η > 0 and∫
0
h(η)η(n−1)/2dη <∞.

Then, for any a > 0 we have∫ a

0
h(η)η(n−1)/2 fn(η)dη > 0.

Proof. By making use of the definition of fn we see that

Ia :=
∫ a

0
h(η)η(n−1)/2 fn(η)dη =

∫ a

0
h(η)η(1−n)/2

∫
∞

0
e−s

4
(ηs)n/2J(n−2)/2(ηs)dsdη.

Therefore, the change of variables z = ηs yields

Ia =
∫ a

0
h(η)η−(n+1)/2

∫
∞

0
e−(z/η)

4
zn/2J(n−2)/2(z)dzdη.

In view of the integrability condition on η 7→ h(η)η(n−1)/2, Fubini’s Theorem implies that

Ia =
∫
∞

0

(√
zJ(n−2)/2(z)

)
z(n−1)/2

∫ a

0
h(η)η−(n+1)/2e−(z/η)

4
dηdz.

For all z > 0, let

g(z) := z(n−1)/2
∫ a

0
h(η)η−(n+1)/2e−(z/η)

4
dη.

Then, by differentiating and integrating by parts

g ′(z) =
n− 1
2
z(n−3)/2

∫ a

0
h(η)η−(n+1)/2e−(z/η)

4
dη − z(n−1)/2

∫ a

0
h(η)η−(n+1)/2

4z3

η4
e−(z/η)

4
dη

= z(n−3)/2
(∫ a

0
h′(η)η(1−n)/2e−(z/η)

4
dη − h(a) a(1−n)/2e−(z/a)

4
)
.

Since h′ ≤ 0 and h > 0, this shows that g is strictly decreasing. Since we assumed n ≥ 3, the Lorch–Szegö Theorem [9] (see
also [10, Corollary 4.15.2]) applies and the proof is complete. �
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In the particular case of powers, we have the following statement

Theorem 3. Let n ≥ 3. Then for any γ ∈ (−1, n−12 ] and any a > 0 we have∫ a

0
ηγ fn(η)dη > 0.

Let n ≥ 1. Then, for any k ≥ 1 we have∫ z−k

0
ηn+1 fn(η)dη < 0.

Proof. The first statement is a direct consequence of Theorem 2.
By taking γ = n− 3 in Proposition 11, we obtain

1
4

∫ z−k

0
ηn+1fn(η)dη = (z−k )

n∆fn(z−k )− n(z
−

k )
n−1f ′n(z

−

k ) < 0,

where the inequality follows from (13) and from the fact that f ′n(z
−

k ) > 0. �

Remark 1. In view of the discussion in the introduction, see (3), it would be interesting to prove Theorem 1 not only for
ηfn(η) but also for ηγ fn(η)with γ ≥ 1 as large as possible. This is related to finding the largest value γn of γ for which∫ a

0
ηγ fn(η)dη ≥ 0 for all a > 0.

Note that for any γ ∈ (−1, γn) the above integral is finite and strictly positive. By Theorem 3 we know that for any n ≥ 1
we have γn < n+ 1. Moreover, if n ≥ 3 then γn ≥ n−1

2 , see again Theorem 3. If n = 2, then γ2 ≥ 1, see Theorem 1. If n = 1,
by repeating the arguments in the proof of [1, Lemma A.4], we have that∫ z−1

0
f1(η)dη > 0

which, combined with Theorem 1, yields γ1 ≥ 0. By Proposition 10 we know that γn+2 ≤ γn + 2. Although (8) holds for
β = 0, numerical experiments suggest that γn < n− 1, at least in high dimensions n. For instance, if n = 20, it seems that
16 < γ20 < 17.

5. Extensions to polyharmonic heat kernels

In this section we briefly sketch some properties of higher order polyharmonic heat kernels. The proofs can be obtained
by slightly modifying the arguments in [1]. So, form ≥ 2 consider the following Cauchy problem for the polyharmonic heat
equation{

ut + (−∆)mu = 0 in Rn+1
+

u (x, 0) = u0(x) in Rn,
(15)

where n ≥ 1 and u0 ∈ C0 ∩ L∞ (Rn). Then, (1) admits a unique global in time solution explicitly given by

u(x, t) = αt−n/2m
∫

Rn
u0(x− y)fm,n

(
|y|
t1/2m

)
dy (x, t) ∈ Rn+1

+
,

where α = αm,n > 0 is a suitable normalization constant and

fm,n(η) = η1−n
∫
∞

0
e−s

2m
(ηs)n/2J(n−2)/2(ηs)ds.

By arguing as in [1] and using [10, Section 4.62], we find that (5) still holds, independently of m. Moreover, the following
(2m− 1)th-order differential equation generalizes (7):

[∆m−1fm,n]′(η) =
(−1)m

2m
η fm,n(η) for all n ≥ 1. (16)

It is straightforward that (16) coincides with (7) if m = 2, whereas it reduces to f ′(η) = − 12ηf (η) whenever m = 1 (recall
that in the latter case, the kernel f is independent of n).
With these two identities, we can prove results similar to (8). We can show that

Cm,n,β :=
∫
∞

0
ηn−1−β fm,n(η)dη > 0 for all integer n ≥ 1 and all β ∈ [0, n). (17)
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The proof of (17) follows the lines of [1], that is, we combine the use of Fubini’s Theorem, Lorch–Szegö’s Theorem, several
integration by parts and two crucial recurrence formulas based on (5) and (16), namely

Cm,n+2,β = (n− β)Cm,n,β for all β ∈ (0, n)

Cm,n,β = 2m
m−1∏
j=1

[(2m+ β − 2j)(n+ 2j− 2m− β)] Cm,n+2,β+2m for all β ∈ (0, n+ 2− 2m).

Clearly, we expect that (17) may enable one to prove eventual local positivity results for (15) when u0 is as in (9).
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