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Abstract. We study the fourth-order nonlinear critical problem Δ2u =

u2∗−1 in a smooth, bounded domain Ω ⊂ R
n, n ≥ 5, subject to the

boundary conditions u = Δu − duν = 0 on ∂Ω. We provide estimates
for the range of parameters d ∈ R for which this problem admits a
positive solution. If the domain is the unit ball, we obtain an almost
complete description.

1. Introduction

Let Ω ⊂ R
n (n ≥ 5) be a smooth, bounded domain, let 2∗ = 2n

n−4 denote
the critical Sobolev exponent, and let d ∈ R. The present paper is concerned
with the following fourth-order elliptic problem with purely critical growth
and Steklov-type boundary conditions:{

Δ2u = u2∗−1, u > 0 in Ω
u = 0, Δu − duν = 0 on ∂Ω.

(1.1)

Here uν denotes the outer normal derivative of u on ∂Ω. It is already evi-
dent from the well-studied second-order case that nonlinear equations with
critical growth terms present highly interesting phenomena concerning the
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existence/nonexistence of positive solutions; see the seminal paper by Brezis-
Nirenberg [6] and also [25, Chapter III] for a survey. For fourth-order equa-
tions the existence/nonexistence problem is even more challenging, since the
available techniques strongly depend on the imposed boundary conditions.
The present paper is motivated by its applications to conformal geometry
(see e.g. [18, Section 2.2]) and by the growing interest in recent years in the
corresponding Dirichlet boundary value problem

Δ2u = u2∗−1, u > 0 in Ω, u = uν = 0 on ∂Ω, (1.2)

and Navier boundary value problem

Δ2u = u2∗−1, u > 0 in Ω, u = Δu = 0 on ∂Ω. (1.3)

We point out that (1.3) corresponds to d = 0 in (1.1), whereas (1.2) should
be seen as the limit case d = −∞ in (1.1). We wish to show that the existence
(respectively nonexistence) of solutions to (1.1) depends in a subtle way on
the parameter d; thus, we highlight aspects of the equation Δ2u = u2∗−1

which cannot be observed by considering just (1.2) and (1.3).
Let us recall that if the domain Ω is strictly star-shaped, then neither (1.2)

nor (1.3) admit solutions; see [19, 20, 27]. A first natural question then arises:
do these nonexistence results really depend on the geometry of the domain?
The answer is positive. For instance, (1.3) has a solution on every domain
Ω with nontrivial topology; see [7]. This result is not available for (1.2),
but it is shown in [2] that a solution exists on domains with small holes.
Moreover, in [12] it is proved that both (1.2) and (1.3) have solutions in
some contractible (non-star-shaped) domains. It should be mentioned that
the existence results for (1.2) are for nontrivial solutions, not necessarily
positive; this is due to the possible lack of the positivity preserving property
for Δ2 in certain domains.

A second natural question which arises is the following: do the above-
mentioned nonexistence results depend on the particular nonlinearity (pure
power) considered? Also for this question, the answer is positive since sub-
critical perturbations of the pure power term may lead to existence results:
we refer to [8, 10, 14] for the Dirichlet case (1.2) and to [4, 13, 29] for the
Navier case (1.3). At this point, a third natural question arises: do the
nonexistence results also depend on the boundary conditions considered?
As far as we are aware, this question has not been raised previously, and
it is precisely one of the purposes of the present paper to give some answer
to it. In other words, unlike in the present paper, in all the just-mentioned
references modifications of the domain or of the equation were considered. In
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particular, modifications of the equation turned out to be quite sensitive to
the space dimension, and this led to the study of the so-called critical dimen-
sions [24]. According to [8, Theorem 1.1] and [24, Theorem 3] (respectively
[29, Theorem 1] and [12, Theorem 3]) it is known that the only critical dimen-
sions for the biharmonic operator Δ2 under Dirichlet (respectively Navier)
boundary conditions are n = 5, 6, 7. Here we study modifications of the
boundary conditions, and we show that these have a quite a different effect
that seems “almost independent” of the space dimension. More precisely,
when Ω = B (the unit ball) for any n ≥ 5 we find the threshold d = 4
for nonexistence results relative to (1.1). Moreover, a suitable modification
of the Brezis-Nirenberg technique [6] (for the existence results) seems to
show that the critical dimensions for the Steklov problem might be different,
namely n = 5, 6.

2. Main results

To present our results concerning (1.1), we recall some facts about the
boundary eigenvalue problem{

Δ2u = 0 in Ω
u = 0, Δu − duν = 0 on ∂Ω .

(2.1)

This problem was studied by Kuttler [17] and Payne [21] more than 30
years ago, whereas the recent paper [3] contains extensions and new results,
relating in particular (2.1) to the positivity-preserving properties of Δ2 under
the Steklov-type boundary conditions. Let H(Ω) := [H2 ∩ H1

0 (Ω)] \ H2
0 (Ω)

endowed with the norm ‖Δu‖2 for all u ∈ H(Ω). The smallest (positive)
eigenvalue σ of (2.1) is characterized variationally as

σ := inf
u∈H(Ω)

∫
Ω |Δu|2∫
∂Ω u2

ν

= inf
u∈H(Ω)

‖Δu‖2
2

‖u‖2
∂ν

. (2.2)

Here and in the following, we denote by ‖ · ‖p the usual Lp(Ω)-norm (1 ≤
p ≤ ∞), and we put

‖u‖2
∂ν

=
∫

∂Ω
u2

ν for u ∈ H2 ∩ H1
0 (Ω).

Hence, σ is the largest constant satisfying

‖Δu‖2
2 ≥ σ‖u‖2

∂ν
for all u ∈ H2 ∩ H1

0 (Ω) (2.3)

and σ−1/2 is the norm of the compact linear operator H2 ∩ H1
0 (Ω) →

L2(∂Ω), u 
→ uν . It is known (see [17] for n = 2 and [3] for n ≥ 3) that, up
to a multiplicative constant, there exists a unique eigenfunction φ1 ∈ H(Ω)
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corresponding to the eigenvalue σ, and −Δφ1 ≥ 0 in Ω (so that φ1 > 0 in Ω
and φ1

ν < 0 on ∂Ω).
We say that a function u ∈ H2∩H1

0 (Ω) is a weak solution of (1.1) if u > 0
almost everywhere in Ω and∫

Ω
ΔuΔv − d

∫
∂Ω

uνvν =
∫

Ω
u2∗−1v for all v ∈ H2 ∩ H1

0 (Ω) . (2.4)

It can be shown that a weak solution in this sense is in fact a strong (classical)
solution; see [3, Proposition 23] and also [28].

Our first result is concerned with least-energy solutions (or mountain-pass
solutions according to the variational characterization of [1]) that minimize
the functional

Qd : H2 ∩ H1
0 (Ω) \ {0} → R, Qd(u) =

‖Δu‖2
2 − d‖u‖2

∂ν

‖u‖2
2∗

. (2.5)

Theorem 1. Let Ω ⊂ R
n (n ≥ 5) be a smooth, bounded domain, and let σ

be as in (2.2). Then
(i) If d ≥ σ, then (1.1) admits no solution.
(ii) There exists σ∗ < σ such that if σ∗ < d < σ, then (1.1) admits a

least-energy solution ud; these solutions satisfy

ud → 0 in H2(Ω) ∩ L∞(Ω) and
ud

‖Δud‖2
→ φ1 in H2(Ω) as d → σ ,

(2.6)
where φ1 is the first positive eigenfunction of (2.1) such that ‖Δφ1‖2 = 1.

In contrast to the cases d = 0 (Navier boundary conditions) and d = −∞
(Dirichlet boundary conditions), the existence statement of Theorem 1 is
independent of geometrical assumptions on the domain Ω. The proof of
Theorem 1 (ii) is variational and relies on a compactness argument; see
Proposition 13 below.

Next, we restrict our attention to the case where Ω = B, the unit ball. In
this case, it is known that σ = n; see [3]. Then, we prove

Theorem 2. Assume that Ω = B (the unit ball) and that d ≤ 4. Then (1.1)
admits no solution.

The proof of this result consists in two steps. First we use an identity for
arbitrary C4(Ω)-functions noted by Mitidieri [19] to derive a Pohozaev-type
identity (in the spirit of [22, 23]) for solutions of (1.1). More precisely, we
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obtain the following boundary integral equality for solutions u of (1.1) (see
Section 6 below):∫

∂Ω

[
2 (x · ∇Δu) − d2 (x · ν)uν + nd uν

]
uν = 0 . (2.7)

In the particular case where Ω = B, we have x = ν on ∂B, and (2.7) reduces
to ∫

∂B
[2(Δu)ν + d(n − d)uν ]uν = 0 . (2.8)

The last identity still seems unrelated to the statement of Theorem 2. How-
ever, choosing an auxiliary function in a careful way, we can use (2.8) and
the Hopf boundary lemma to complete the proof. We point out that it is
unclear how to use (2.7) on more general domains. In fact, even on a star-
shaped domain nothing seems to be known about the term x · ∇Δu. Note
however that in the case of Navier boundary conditions, i.e., d = 0, two
terms in (2.7) disappear and x · ∇Δu reduces to (x · ν)(Δu)ν because Δu
vanishes on ∂Ω.

As a consequence of Theorem 2, we obtain the following Sobolev inequality
with remainder term:

Corollary 3. For all u ∈ H2 ∩ H1
0 (B) we have

‖Δu‖2
2 ≥ S‖u‖2

2∗ + 4‖u‖2
∂ν

, (2.9)

where S is the Sobolev constant for the embedding H2 ∩ H1
0 (B) ⊂ L2∗(B).

Let us recall that the constant S in (2.9) is independent of the domain;
see [28]. It is clear that (2.9) has no analogue in the first-order space H1

0 .
Inequality (2.9) should also be compared with Theorem 5 in [12].

Next we discuss the range of parameters d for which we can ensure exis-
tence of solutions to (1.1) on Ω = B. For n ≥ 5 we define the number

σn =

⎧⎪⎨
⎪⎩

n − (n − 4)(n2 − 4) Γ(n
2
)

2
8
n +1

(
nΓ(n

2
)

Γ(n)

) 4
n

(
Γ( 2n

n−4
)

Γ( n2

2(n−4)
)

)1− 4
n

if n = 5 or n = 6

4(n−3)
n−4 if n ≥ 7.

In particular, σ5 ≈ 4.5 and σ6 ≈ 5.2; see [30]. Then, we prove

Theorem 4. Assume that Ω = B (the unit ball). Then for all d ∈ (σn, n)
problem (1.1) admits a radial solution. Moreover, the solution is superhar-
monic in B.
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In the next picture, we represent the existence/nonexistence regions for
(1.1) (when Ω = B) according to Theorems 1, 2 and 4. Note that σn → 4 as
n → ∞; namely, σn tends to become “optimal.” The region with a question
mark “?” represents the region 4 < d ≤ σn, which is not covered by our
results.
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Conjecture 5. When Ω = B, (1.1) admits a (radial) solution ud if and
only if 4 < d < n. Moreover, as d → 4+, ud tends to concentrate, namely
ud(0) → +∞ and ud(x) → 0 for 0 < |x| ≤ 1.

In the next section we collect some further results providing evidence in
favour of this conjecture. If it were true, we would have a lower bound
for d independent of the dimension n: by scaling, in a ball of radius R the
existence interval would then be d ∈ ( 4

R , n
R).

Remark 6. If d ≥ 0, we may relax the requirement u > 0 in (1.1) with
u ≥ 0 and u 
≡ 0. Indeed a solution u satisfies uν ≤ 0 on ∂Ω so that,
using the boundary condition, we also infer that −Δu ≥ 0 on ∂Ω. Since
−Δ(−Δu) = Δ2u = u2∗−1 ≥ 0 in Ω, by the maximum principle for −Δ, we
deduce −Δu > 0 in Ω. In turn, this implies u > 0 in Ω and

uν < 0 on ∂Ω . (2.10)

The remainder of this paper is organized as follows. In Section 3 we
collect some further results, some of them related to Conjecture 5 above. In
particular, we provide some numerical evidence for this conjecture. We also
state some open problems. In Section 4 we prove a compactness result, which
is the crucial step in the proof of the existence statements in Theorems 1
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and 4. Sections 4–7 contain the proofs of our main results. In Section 8 we
prove Theorem 7 below.

3. Further results and open problems

3.1. Three variational identities for radial solutions. Throughout this
section we assume that Ω = B (the unit ball) and we consider radially
symmetric solutions. In this case, if we put r = |x|, then (1.1) reads

uiv(r)+
2(n − 1)

r
u′′′(r)+

(n − 1)(n − 3)
r2

u′′(r)− (n − 1)(n − 3)
r3

u′(r)=u
n+4
n−4 (r)

(3.1)
r ∈ [0, 1), while the boundary conditions become

u(1) = 0 , u′′(1) + (n − 1 − d)u′(1) = 0 . (3.2)

Moreover, every nontrivial solution satisfies u′(1) < 0 by the nonexistence
result for (1.2). Hence the identity (2.8) yields the additional boundary
condition

0 = (Δu)′(1) +
d(n − d)

2
u′(1) (3.3)

= u′′′(1) + (n − 1)u′′(1) +
(d(n − d)

2
− (n − 1)

)
u′(1).

Using this and a change of variables introduced in [11], we will prove

Theorem 7. Let ud = ud(r) be a positive solution to (3.1)–(3.2) for some
d. Then,

(d − n)(d − 4)
2

u′
d(1) =

∫ 1

0
rn+1u2∗−1

d (r) dr ,

d(d − n)
2

u′
d(1) =

∫ 1

0
rn−1u2∗−1

d (r) dr ,

d(d − 4)(d − n)(d + n − 4)|u′
d(1)|2 =

32(n + 4)
(n − 4)2

∫ 1

0
rn+2u2∗−3

d (r)[u′
d(r)]

3dr

+
48(n + 4)

n − 4

∫ 1

0
rn+1u2∗−2

d (r)|u′
d(r)|2 dr − 8(n2 − 16)

∫ 1

0
rn−1u2∗

d (r) dr .

Moreover, if a solution ud to problem (3.1)–(3.2) exists for all 4 < d < n,
then as d → 4+ we necessarily have that u′

d(1) remains bounded and ud(r) →
0 for all r > 0.
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Since 2∗ − 3 > −1 for any n and u vanishes of order 1 at r = 1, the third
identity in Theorem 7 makes sense. Note that the first identity in Theorem 7
immediately yields a weaker version of Theorem 2, namely the nonexistence
of positive radial solutions of (1.1) in B when d 
∈ (4, n). The identities of
Theorem 7 suggest that the correct existence interval is d ∈ (4, n), and we
feel that they could help to complete the proof of Conjecture 5 above.

3.2. Numerical results. Here we present some numerical experiments with
Mathematica that give another strong hint that Conjecture 5 should hold.
Let us briefly describe the procedure we followed.

First, we fixed d ∈ (4, n), and we set the Cauchy problem for (3.1) in
r = 1 by choosing ud(1) = 0, u′

d(1) < 0 as a parameter and, according to
(3.2) and (3.3), by taking

u′′
d(1) = (d + 1 − n)u′

d(1) , u′′′
d (1) = (n − d)

(
n − 1 − d

2

)
u′

d(1) .

Then, we asked Mathematica to plot the solution on the interval (0, 1]. We
tried different values of u′

d(1). If it was too negative, the solution remained
positive and blew up to +∞ before reaching (going backwards!) r = 0. If it
was negative but too close to 0, the solution attained a maximum, changed
sign and blew up to −∞ before reaching r = 0. By dichotomy, we chose
intermediate values of u′

d(1) until we reached an equilibrium. We reached
only one equilibrium for every d. This suggests

Problem 8. When Ω = B, does there exist a unique radial solution to (1.1)
for all d ∈ (4, n)?

For d very close to 4 and to n, the program was quite unstable and it was
not so clear that uniqueness of the solution was ensured. For large values
of n (below we consider the case n = 12) one should not completely trust
the numerical results, both because very large numbers appear and because
even if the “correct” shooting derivative u′(1) was of the order of 103, small
perturbations of order 10−6 gave rise to quite different results. In the tables
below, we enclose what we obtained in our experiments.

Table 1. Numerical results in the case n = 5, n+4
n−4 = 9.

d 4.999999 4.9999 4.99 4.8
u′

d(1) -0.96 -1.71 -3.02 -3.85
ud(0) 0.48 0.85 1.52 2.38
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d 4.6 4.5 4.25 4.01 4.0001
u′

d(1) -3.57 -3.34 -2.56 -0.97 -0.3
ud(0) 2.85 3.11 4 10 32

Table 2. Numerical results in the case n = 6, n+4
n−4 = 5.

d 5.99999 5.9999 5.999 5.9 5.75
u′

d(1) -0.75 -1.34 -2.38 -7.15 -8.29
ud(0) 0.35 0.67 1.2 3.9 5.2

d 5.5 5 4.5 4.1 4.01
u′

d(1) -8.49 -7.01 -4.49 -1.72 -0.52
ud(0) 6.8 11 18 46 145

Table 3. Numerical results in the case n = 12, n+4
n−4 = 2.

d 11.9 11 10 9 8
u′

d(1) -776.62 -5429.32 -6949.15 -6235.15 -4521.8
ud(0) 425 6500 2 · 104 5.2 · 104 1.3 · 105

d 7 6 5 4.1
u′

d(1) -2657.56 -1159.79 -268.86 -2.38
ud(0) 2.9 · 105 7.5 · 105 3.5 · 106 2 · 108

In order to test the procedure, when n = 5 we also tried the values d = 3
and d = 6, which are out of the range (4, n). In both cases, regardless of
the choice of u′

d(1), the solution blew up to +∞ before reaching r = 0. The
blow-up seemed monotonic; namely, for |u′

d(1)| decreasing, the blow-up time
was also decreasing.

Finally, note that our numerical results seem to show that u′
d(1) → 0 and

ud(0) → +∞ as d → 4+.

3.3. Nodal radially symmetric solutions in the ball. We consider here
radial sign-changing solutions of (1.1) when Ω = B. More precisely, for
r ∈ [0, 1) we want to solve

uiv(r) +
2(n − 1)

r
u′′′(r) +

(n − 1)(n − 3)
r2

u′′(r) − (n − 1)(n − 3)
r3

u′(r)

= |u(r)|
8

n−4 u(r) , (3.4)
with boundary conditions (3.2) and

u′(0) = u′′′(0) = 0 . (3.5)
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This problem admits no solution, as stated in

Proposition 9. For any d ∈ R, (3.4) with boundary conditions (3.2)–(3.5)
admits no sign-changing solution.

Proof. This follows by the arguments developed in [15]; see also [11]. It is
shown there that any solution of (3.4)–(3.5) (with u(0) > 0) that attains 0
in finite time, remains then negative and blows up to −∞ in finite time. �

Let us also recall the following consequence of the comparison principle
due to McKenna-Reichel [18], which applies to any solution of (3.4):

Proposition 10. Any solution u of (3.4)–(3.2)–(3.5) with u(0) > 0 satisfies
u′(r) < 0, Δu(r) < 0, (Δu)′(r) > 0 for all r ∈ (0, 1].

Proof. Let α = u(0) > 0, and consider the equation Δ2v = v2∗−1 in R
n.

It is well-known [26] that it admits a unique positive entire radial solution
v vanishing at infinity and satisfying v(0) = α. Moreover, this solution
satisfies v′(r) < 0 and Δv(r) < 0 for all r > 0. In view of the comparison
principle in [18] we first deduce that Δu(0) < Δv(0) and, subsequently, that
u′(r) < v′(r) < 0 and Δu(r) < Δv(r) < 0 for all r ∈ (0, 1]. This proves
the first two inequalities. The third inequality follows by integrating the
equation

{
rn−1 [Δu(r)]′

}′ = rn−1u2∗−1(r) over [0, r] for r ∈ (0, 1]. �

3.4. Low- and high-energy solutions in general domains. In view of
Theorem 1 and Proposition 14 below, we know that there exists an interval
I = I(Ω) ⊂ (0, σ) such that (1.1) admits a least-energy solution if and only if
d ∈ I(Ω). The results in [28] show that there exists no least-energy solution
of (1.1) when d = 0. Hence d0(Ω) := inf I(Ω) ≥ 0. Note also that d0(B) ≥ 4
by Theorem 2. This leads to the following question:

Problem 11. Which geometrical properties of Ω determine the value of
d0(Ω)?

As already mentioned, when d = 0 (Navier boundary conditions) the
existence of higher-energy positive solutions of (1.1) depends on the geometry
of Ω. This suggests the following question:

Problem 12. For which domains Ω and parameters d does (1.1) have a
higher-energy positive solution? Is it possible to choose d > d0(Ω) and to
get multiple positive solutions?
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4. A compactness result

Let Ω ⊂ R
n (n ≥ 5) be a smooth bounded domain. We first recall the

characterization of the Sobolev constant for the embedding H2 ∩ H1
0 (Ω) ⊂

L2∗(Ω):

S = inf
u

‖Δu‖2
2

‖u‖2
2∗

,

where the infimum is taken over all u ∈ H2 ∩ H1
0 (Ω) \ {0}. It was shown in

[28] that S is never achieved if Ω 
= R
n and that S does not depend on the

domain. Moreover, we have

S = π2(n − 4)(n2 − 4)n
(Γ(n

2 )
Γ(n)

)4/n
; (4.1)

see also [26]. Consider now the following minimization problem, where Qd

is defined in (2.5):

Σd(Ω) := inf
u∈H2∩H1

0 (Ω)\{0}
Qd(u) . (4.2)

The purpose of this section is to prove the following:

Proposition 13. Assume that 0 < d < σ. Then if Σd(Ω) < S, the infimum
in (4.2) is achieved. Moreover, up to a change of sign, any minimizer of
(4.2) is strictly superharmonic in Ω. Finally, up to a Lagrange multiplier,
any minimizer is a positive solution of (1.1).

Proof. Let {um}m≥0 be a minimizing sequence for Σd(Ω) such that

‖um‖2
2∗ = 1. (4.3)

Then,
‖Δum‖2

2 − d‖um‖2
∂ν

= Σd(Ω) + o(1) (m → +∞). (4.4)

Moreover, recalling (2.3) we have

‖Δum‖2
2 = Σd(Ω) + d‖um‖2

∂ν
+ o(1) ≤ Σd(Ω) +

d

σ
‖Δum‖2

2 + o(1)

so that {um}m≥0 is bounded in H2 ∩H1
0 (Ω). Hence, {∇um}m≥0 is bounded

in H1(Ω). Exploiting the compactness of the embeddings H1(Ω) ↪→ L2(∂Ω)
and H2 ∩H1

0 (Ω) ⊂ L2(Ω), we deduce that there exists u ∈ H2 ∩H1
0 (Ω) such

that
um ⇀ u in H2 ∩ H1

0 (Ω), (um)ν → uν inL2(∂Ω),
um → u in L2(Ω), (4.5)
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up to a subsequence. That is, if we set vm := um − u, then

vm ⇀ 0 in H2 ∩ H1
0 (Ω), (vm)ν → 0 in L2(∂Ω),

vm → 0 in L2(Ω). (4.6)

On the other hand, by (4.3) we infer that ‖Δum‖2
2 ≥ S, so that from (4.4)

we also obtain

d‖um‖2
∂ν

= ‖Δum‖2
2 − Σd(Ω) + o(1) ≥ S − Σd(Ω) + o(1),

which remains bounded away from 0 since Σd(Ω) < S. From this fact we
deduce that u 
= 0.

In view of (4.5)–(4.6) we may rewrite (4.4) as

‖Δu‖2
2 + ‖Δvm‖2

2 − d‖u‖2
∂ν

= Σd(Ω) + o(1). (4.7)

Moreover, by (4.3) and the Brezis-Lieb lemma [5], we have

1 = ‖u + vm‖2∗
2∗ = ‖u‖2∗

2∗ + ‖vm‖2∗
2∗ + o(1) ≤ ‖u‖2

2∗ + ‖vm‖2
2∗ + o(1)

≤ ‖u‖2
2∗ +

1
S
‖Δvm‖2

2 + o(1) ,

where we also used the fact that both ‖u‖2∗ and ‖vm‖2∗ do not exceed 1.
Since Σd(Ω) ≥ 0 for every 0 < d < σ, this last inequality gives

Σd(Ω) ≤ Σd(Ω)‖u‖2
2∗ +

Σd(Ω)
S

‖Δvm‖2
2 + o(1).

By combining this inequality with (4.7), we obtain

‖Δu‖2
2 − d‖u‖2

∂ν
= Σd(Ω) − ‖Δvm‖2

2 + o(1)

≤ Σd(Ω)‖u‖2
2∗ +

(Σd(Ω)
S

− 1
)
‖Δvm‖2

2 + o(1) ≤ Σd(Ω)‖u‖2
2∗ + o(1),

which shows that u 
= 0 is a minimizer for (4.2). This proves the first part
of Proposition 13.

Consider now a minimizer u for (4.2) and assume for contradiction that it
is not superharmonic (nor subhamonic) in Ω. Then, define w ∈ H2 ∩H1

0 (Ω)
as the unique solution of{−Δw = |Δu| in Ω

w = 0 on ∂Ω.

By the maximum principle for superharmonic functions it follows that w > 0
in Ω and wν < 0 on ∂Ω.
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Moreover, both w ± u are superharmonic (but not harmonic!) in Ω and
vanish on ∂Ω. This proves that

|u| < w in Ω , |uν | < |wν | on ∂Ω .

In turn, these inequalities (and −Δw = |Δu|) prove that Qd(w) < Qd(u),
which contradicts the assumption that u minimizes (4.2).

Therefore, any minimizer u for (4.2) is superharmonic (and positive) in
Ω. By the standard Lagrange-multiplier method, it is readily seen that a
multiple of u is a positive solution of (1.1). Since it is superharmonic in Ω
it also satisfies uν < 0 on ∂Ω. Hence, since −Δu = −duν on ∂Ω, we finally
infer that −Δu > 0 in Ω. �
Remark 14. In view of [28] we have that Σ0(Ω) = S. Moreover, using
the first eigenfunction φ1 in (2.5)–(4.2), we also have Σσ(Ω) = 0. As a
consequence of Proposition 13, one can show that the map d 
→ Σd(Ω) is
continuous on [0, σ] and is strictly decreasing in the range where Σd(Ω) < S.

5. Proof of Theorem 1

Let φ1 be a positive eigenfunction of (2.1). Taking v = φ1 as test function
in (2.4) we obtain∫

Ω
ΔuΔφ1 − d

∫
∂Ω

uνφ
1
ν =

∫
Ω

u2∗−1φ1 . (5.1)

Two integrations by parts yield∫
Ω

ΔuΔφ1 = −
∫

Ω
∇u∇Δφ1 +

∫
∂Ω

Δφ1uν

=
∫

Ω
uΔ2φ1 + σ

∫
∂Ω

uνφ
1
ν = σ

∫
∂Ω

uνφ
1
ν , (5.2)

where we took into account that φ1 solves (2.1) and u satisfies the boundary
conditions in (1.1). Plugging (5.2) into (5.1) yields

(σ − d)
∫

∂Ω
uνφ

1
ν =

∫
Ω

u2∗−1φ1 > 0 .

In view of (2.10), this shows that d < σ. We have so shown that if (1.1)
admits a solution, then necessarily d < σ. This proves statement (i) of
Theorem 1.

Consider again the first eigenfunction φ1, and let

σ∗ :=
‖Δφ1‖2

2 − S‖φ1‖2
2∗

‖φ1‖2
∂ν

.
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Then, σ∗ < σ and for all d > σ∗ we have

Σd(Ω) ≤
‖Δφ1‖2

2 − d‖φ1‖2
∂ν

‖φ1‖2
2∗

< S .

The existence part of statement (ii) then follows from Proposition 13.

We now prove the first of (2.6). To this end, we remark that in view of
the characterization of φ1 in (4.2), we have

Σd = Σd(Ω) ≤
‖Δφ1‖2

2 − d‖φ1‖2
∂ν

‖φ1‖2
2∗

=
1 − d

σ

‖φ1‖2
2∗

→ 0 as d → σ . (5.3)

Since ud is a least-energy solution of (1.1), we have

‖Δud‖2
2 − d‖ud‖2

∂ν

‖ud‖2
2∗

= Σd . (5.4)

Moreover, by taking v = ud in (2.4), we have

‖Δud‖2
2 − d‖ud‖2

∂ν
= ‖ud‖2∗

2∗ . (5.5)

Identities (5.4)–(5.5) readily imply that ‖ud‖2∗ = Σ(n−4)/8
d . In turn, this and

(5.3) show that
ud → 0 in L2∗(Ω) as d → σ . (5.6)

We endow H2 ∩ H1
0 (Ω) with the scalar product

(v, w)d :=
∫

Ω
ΔvΔw − d

∫
∂Ω

vνwν . (5.7)

We write ud according to the decomposition H2 ∩ H1
0 (Ω) = [span{φ1}] ⊕

[span{φ1}]⊥, where orthogonality is intended with respect to the scalar
product in (5.7). In this way, for all d ∈ (σ∗, σ) we obtain αd ∈ R and
ψd ∈ [span{φ1}]⊥ such that

ud = αdφ
1 + ψd . (5.8)

Using (5.5) and (5.6), we infer (as d → σ)

o(1) ≥ (ud, ud)d = α2
d(φ

1, φ1)d + (ψd, ψd)d ≥ α2
d

σ − d

σ
+

σ2 − d

σ2
‖Δψd‖2

2 ,

(5.9)
where σ2 > σ denotes the second Steklov eigenvalue (see [9]). The above in-
equality implies at once that ‖Δψd‖2 → 0 so that also ‖ψd‖2∗ → 0. Together
with (5.6), this implies that αd → 0 and finally that

ud → 0 in H2(Ω) as d → σ . (5.10)
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The Lp(Ω) convergence for any p < ∞ follows now by the same argument
used in [28, Lemma B1]. Moreover, we obtain uniform convergence with
the same argument as [28, Lemma B3] and recalling that the boundary
conditions in (1.1) satisfy the complementing condition; see [3]. This proves
the first part of (2.6).

In order to prove the second part of (2.6), we note that by (5.3), (5.4) and
(5.9), we infer

o(1) =
‖Δud‖2

2 − d‖ud‖2
∂ν

‖ud‖2
2∗

≥ σ2 − d

2σ2

‖Δψd‖2
2

α2
d‖φ1‖2

2∗ + ‖ψd‖2
2∗

,

where we also used the inequality

‖ud‖2
2∗ ≤ (‖αdφ

1‖2∗ + ‖ψd‖2∗)2 ≤ 2(α2
d‖φ1‖2

2∗ + ‖ψd‖2
2∗) .

Therefore, we obtain

o(1) ≥ σ2 − d

2σ2

α−2
d ‖Δψd‖2

2

‖φ1‖2
2∗ + α−2

d ‖ψd‖2
2∗

. (5.11)

For contradiction, if α−2
d ‖ψd‖2

2∗ → +∞, then we may neglect ‖φ1‖2
2∗ in the

previous inequality so that we obtain

o(1) ≥ σ2 − d

2σ2

‖Δψd‖2
2

‖ψd‖2
2∗

,

contradicting Sobolev’s inequality. This contradiction shows that α−2
d ‖ψd‖2

2∗

remains bounded. Hence, (5.11) implies that α−2
d ‖Δψd‖2

2 → 0 as d → σ. In
particular, this means that αd > 0 (recall ud > 0) and α−2

d ‖Δud‖2
2 → 1 as

d → σ. Therefore, we finally obtain∥∥∥ Δud

‖Δud‖2
− Δφ1

∥∥∥2

2
= 2 − 2

‖Δud‖2

∫
Ω

Δφ1(αdΔφ1 + Δψd) → 0,

which proves (2.6) and completes the proof of Theorem 1.

6. Proof of Theorem 2 and Corollary 3

First we show that, on an arbitrary smooth, bounded domain Ω, any
solution u of (1.1) satisfies the boundary integral identity (2.7). Our starting
point is the Rellich-type identity [19, (2.6)] of Mitidieri for arbitrary C4(Ω)-
functions, which can be written as∫

Ω
(Δ2u) x · ∇u dx − n

2

∫
Ω
(Δu)2 dx − (n − 2)

∫
Ω
∇Δu · ∇u dx
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= −1
2

∫
∂Ω

(Δu)2x · ν ds

+
∫

∂Ω

(
(Δu)ν(x · ∇u) + uν(x · ∇Δu) −∇Δu · ∇u (x · ν)

)
ds. (6.1)

For nonnegative u satisfying the first boundary condition u = 0 on ∂Ω, we
have ν|∇u| = −∇u and therefore ∇Δu · ∇u (x · ν) = (Δu)ν(x · ∇u) on ∂Ω,
so that (6.1) reduces to∫

Ω
(Δ2u)x · ∇u − n

2

∫
Ω
(Δu)2 + (n − 2)

∫
Ω
(Δ2u)u

= −1
2

∫
∂Ω

(Δu)2x · ν +
∫

∂Ω
uν(x · ∇Δu). (6.2)

Here we integrated by parts to get the third term in (6.2). Now, for solutions
of (1.1), we can use (2.4) to rewrite the left-hand side of (6.2) as∫

Ω
(Δ2u)x · ∇u − n

2

∫
Ω
(Δu)2 + (n − 2)

∫
Ω
(Δ2u)u

=
∫

Ω
u2∗−1(x · ∇u) − n

2

(∫
Ω

u2∗ + d

∫
∂Ω

u2
ν

)
+ (n − 2)

∫
Ω

u2∗

=
n − 4
2n

∫
Ω

x · ∇(u2∗) +
n − 4

2

∫
Ω

u2∗ − nd

2

∫
∂Ω

u2
ν

=
n − 4
2n

∫
Ω

div(u2∗x) − nd

2

∫
∂Ω

u2
ν

=
n − 4
2n

∫
∂Ω

u2∗x · ν − nd

2

∫
∂Ω

u2
ν = −nd

2

∫
∂Ω

u2
ν . (6.3)

Combining (6.2) and (6.3) and using that Δu = duν on ∂Ω, we get (2.7).
Next we consider Ω = B, and we prove Theorem 2. Assume for contradiction
that u is a solution of (1.1) for some d ≤ 4, and consider the auxiliary
function φ ∈ C2(B) defined by

φ(x) = (4 − d + d|x|2)Δu(x) − 4dx · ∇u(x) + d(8 − 2n)u(x), x ∈ B.

Then φ = 0 on ∂B, since u = 0 and Δu = duν on ∂B. A short computation
shows

Δφ = 2dnΔu + 4dx · ∇Δu + (4 − d + d|x|2)Δ2u

− 4d(2Δu + x · ∇Δu) + d(8 − 2n)Δu

= (4 − d + d|x|2)u2∗−1.
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If u > 0 solves (1.1), then Δφ > 0, since d ≤ 4. By the maximum principle
we conclude that φ < 0 in B, and φν > 0 on ∂B by the Hopf boundary
lemma. But on ∂B we also get by direct computation (using also the second
boundary condition)

φν = 2dΔu + 4(Δu)ν − 4d(uν + uνν) + d(8 − 2n)uν

= 2dΔu + 4(Δu)ν − 4d(uν + Δu − (n − 1)uν) + d(8 − 2n)uν

= 2
(
2(Δu)ν + d(n − d)uν

)
,

so that 2(Δu)ν + d(n − d)uν > 0 on ∂B. Since u > 0 in B we have uν ≤ 0
on ∂B. Then, the last inequality combined with identity (2.8) yields uν = 0
on ∂B. But then u would be a solution of the Dirichlet problem (1.2) in
B, which is known to have no positive solutions [20]. This contradiction
concludes the proof of Theorem 2. �

Corollary 3 is a direct consequence of the definition of Σd combined with
Theorem 2 and the fact that, in view of Proposition 13, Σ4(B) = S. �

7. Proof of Theorem 4

Throughout this section we denote by Σd the number Σd(B) defined in
(4.2). Moreover, we will use some properties of the Gamma and Beta func-
tions, for which we refer to [30, 31]. Let us recall that

ωn := |∂B| =
2πn/2

Γ(n
2 )

. (7.1)

In order to prove Theorem 4, we apply Proposition 13. More precisely, we
show that if d lies in the range specified by Theorem 4, then Σd < S. And
this is obtained by constructing a suitable radial function u ∈ H2 ∩ H1

0 (B)
for which Qd(u) < S. To this end, we have to distinguish between “high”
space dimensions n ≥ 7 and “low” space dimensions n = 5, 6. In the first
case we prove

Lemma 15. Assume that n ≥ 7. Then, Σd < S for all 4n−3
n−4 < d < n.

Proof. For all ε > 0 consider the entire function uε(x) := 1

(ε2+|x|2)
n−4

2
. It is

known (see e.g. [26]) that

S =

∫
Rn |Δuε|2(∫

Rn |uε|2∗
)2/2∗

for all ε > 0 , (7.2)
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where S is as in (4.1). We now briefly recall some basic facts about uε.
Firstly, we compute∫

Rn

|uε|2
∗

=
∫

Rn

1
(ε2 + |x|2)n

=
1
εn

∫
Rn

1
(1 + |x|2)n

=
ωn

εn

∫ ∞

0

rn−1

(1 + r2)n
dr =

ωn

2εn

∫ ∞

0

t
n
2
−1

(1 + t)n
dt =

ωn

2εn

[Γ(n
2 )]2

Γ(n)
=:

K2

εn
. (7.3)

Moreover, by (7.2),∫
Rn

|Δuε|2 = S
( ∫

Rn

|uε|2
∗
)2/2∗

= S
K

2/2∗

2

εn−4
=:

K1

εn−4
. (7.4)

In particular, (7.3)–(7.4) and (4.1) show that K1 and K2 are linked by the
following relations:

K1 = n(n − 4)(n2 − 4)K2 , K1 = S K
2/2∗

2 . (7.5)

Consider now the function

Uε(x) := uε(x) − 1

(ε2 + 1)
n−4

2

=
1

(ε2 + |x|2)n−4
2

− 1

(ε2 + 1)
n−4

2

.

Since Uε ∈ H2 ∩ H1
0 (B), we may compute

Qd(Uε) =

∫
B |Δuε|2 − d

∫
∂B |(uε)ν |2( ∫

B

∣∣uε(x) − 1

(ε2+1)
n−4

2

∣∣2∗)2/2∗
.

We first remark that∫
∂B

|(uε)ν |2 =
(n − 4)2

(1 + ε2)n−2
ωn → (n − 4)2ωn as ε → 0 . (7.6)

Next, we claim that as ε → 0 the following two facts hold:∫
B
|Δuε|2 =

K1

εn−4
− 4(n − 4)ωn + o(1), (7.7)

∫
B

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗ =
K2

εn
− 4ωn

(n − 4)(n + 2)ε4
+ o(ε−4), (7.8)

where K2 and K1 are defined in (7.3)–(7.4). Postponing their proofs, from
(7.5)–(7.6)–(7.7)–(7.8) we get as ε → 0

Qd(Uε) =
K1

εn−4

(
1 − εn−4

K1
ωn(n − 4)(4 + d(n − 4)) + o(εn−4)

)
K

2/2∗
2

εn−4

(
1 − 4ωn

(n−4)(n+2)K2
εn−4 + o(εn−4)

)2/2∗
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= S
(
1 − ωn(n − 4)(4 + d(n − 4))

εn−4

K1
+ o(εn−4)

)

×
(
1 +

4ωnεn−4

n(n + 2)K2
+ o(εn−4)

)

= S
[
1 − εn−4ωn

((n − 4)(4 + d(n − 4))
K1

− 4
n(n + 2)K2

)
+ o(εn−4)

]
.

Hence, if
(n − 4)(4 + d(n − 4))

K1
− 4

n(n + 2)K2
> 0 (7.9)

then Qd(Uε) < S for sufficiently small ε, and the statement follows. But
(7.9) also reads

d >
4

n − 4

( K1

n(n + 2)(n − 4)K2
− 1

)
= 4

n − 3
n − 4

,

where the last (striking!) equality follows from (7.5). So we have proved that
if (7.7) and (7.8) hold, then Qd(Uε) < S for sufficiently small ε provided that
d > 4n−3

n−4 .
Hence, the proof of the lemma will be complete once we demonstrate the

estimates (7.7) and (7.8). By (7.4) we have∫
B
|Δuε|2 =

∫
Rn

|Δuε|2 −
∫

Rn\B
|Δuε|2

=
K1

εn−4
− (n − 4)2

∫
Rn\B

(nε2 + 2|x|2)2
(ε2 + |x|2)n

=
K1

εn−4
− 4(n − 4) ωn + o(1),

which is (7.7). More delicate is the proof of (7.8). By (7.3) we have∫
B

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗ =
∫

Rn

|uε(x)|2∗

−
∫

Rn\B
|uε(x)|2∗ −

∫
B

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗)

=
K2

εn
− ωn

n
+ o(1) −

∫
B

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗). (7.10)

We now decompose the last term in the sum in (7.10) as follows:∫
B

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗)
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=
∫

B
ε1/n

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗)

+
∫

B\B
ε1/n

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗). (7.11)

We study separately the two terms above. For the first term, we have∫
B

ε1/n

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗)

=
∫

B
ε1/n

1
(ε2 + |x|2)n

[
1 −

(
1 −

(ε2 + |x|2
ε2 + 1

)n−4
2

)2∗]

=
∫

B
ε1/n

1
(ε2 + |x|2)n

[
2∗

(ε2 + |x|2
ε2 + 1

)n−4
2 + o

((ε2 + |x|2
ε2 + 1

)n−4
2

)]

= 2∗ωn(1 + o(1))
∫ ε1/n

0

rn−1

(ε2 + r2)
n+4

2

dr =
2∗ωn

2ε4
(1 + o(1))

∫ ∞

0

t
n
2
−1

(1 + t)
n
2
+2

dt

=
2∗ωn

2ε4

Γ(n
2 )Γ(2)

Γ(n
2 + 2)

(1 + o(1)) =
4ωn

(n − 4)(n + 2)ε4
(1 + o(1)).

For the second term, we have∫
B\B

ε1/n

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗)

=
∫

B\B
ε1/n

1
(ε2 + |x|2)n

[
1 −

(
1 −

(ε2 + |x|2
ε2 + 1

)n−4
2

)2∗]

≤
∫

B\B
ε1/n

1
(ε2 + |x|2)n

≤ ωn

∫ ∞

ε1/n

dr

rn+1
=

ωn

nε
+ o(1) = o(ε−4).

Inserting these two estimates into (7.11) yields∫
B

(
|uε(x)|2∗ −

∣∣∣uε(x) − 1

(ε2 + 1)
n−4

2

∣∣∣2∗) =
4ωn

(n − 4)(n + 2)ε4
+ o(ε−4).

In turn, inserting this estimate into (7.10) proves (7.8). �
The lower bound 4n−3

n−4 found in Lemma 15 is not smaller than n when
n = 5 or n = 6. Therefore, Lemma 15 does not apply in these dimensions.
But here we can prove
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Lemma 16. Assume that n = 5 or n = 6. Then, Σd < S for all σn < d < n,
where

σn = n − (n − 4)(n2 − 4)
Γ(n

2 )

2
8
n

+1

(nΓ(n
2 )

Γ(n)

) 4
n
( Γ( 2n

n−4)

Γ( n2

2(n−4))

)1− 4
n

.

Therefore, σ5 ≈ 4.5 and σ6 ≈ 5.2.

Proof. It is shown in [3] that the first eigenfunction of (2.1) in B can be
normalized to be φ1(x) = 1 − |x|2. We have

‖Δφ1‖2
2 = 4nωn , ‖φ1‖2

∂ν
= 4ωn ,

‖φ1‖2∗
2∗ = ωn

∫ 1

0
(1 − r2)

2n
n−4 rn−1 dr

=
ωn

2

∫ 1

0
(1 − u)

2n
n−4 u

n
2
−1 du =

2ωn

n

Γ(n
2 )Γ( 2n

n−4)

Γ( n2

2(n−4))
,

from which we conclude that

Qd(φ1) = 2(n − d)
(
2ωn

) 4
n
( nΓ( n2

2(n−4))

Γ(n
2 )Γ( 2n

n−4)

)n−4
n

.

By combining (4.1) with (7.1) and the just-found value of Qd(φ1), we deduce
that Qd(φ1) < S whenever d > σn. This completes the proof of the lemma.

�

8. Proof of Theorem 7

With the change of variables

u(r) = r−
n−4

2 v(log r) (0 < r ≤ 1), v(t) = e
n−4

2
tu(et) (t ≤ 0), (8.1)

equation (3.1) may be rewritten as

viv(t) − K2v
′′(t) + K1v(t) = v

n+4
n−4 (t) t ∈ (−∞, 0) , (8.2)

where

K1 =
(n(n − 4)

4

)2
, K2 =

n2 − 4n + 8
2

> 0.

We now establish some properties of the solution of (8.2). Firstly, we
derive an upper bound for v:

Lemma 17. For all t ∈ (−∞, 0] we have v(t) ≤
((n − 4)n3

16

)(n−4)/8
.



402 Elvise Berchio, Filippo Gazzola, and Tobias Weth

Proof. For every t ∈ (−∞, 0], we define the energy function

E(t) :=
1
2∗

v2∗(t) − K1

2
v2(t) +

K2

2
(v′(t))2 +

1
2
(v′′(t))2 − v′(t)v′′′(t). (8.3)

By differentiating and using (8.2), we obtain

E′(t) = −[viv(t) − K2v
′′(t) + K1v(t) − v

n+4
n−4 (t)]v′(t) = 0 ∀t ∈ (−∞, 0).

From this, observing that E(t) → 0 as t → −∞, we conclude that

E(t) = 0 ∀t ∈ (−∞, 0).

Since v(t) is positive on (−∞, 0) and vanishes both for t = 0 and as t → −∞,
v admits a global maximum over (−∞, 0]. Let t be the maximum point of
v. Then, v′(t) = 0 and

0 = E(t) =
1
2∗

v2∗(t) − K1

2
v2(t) +

1
2
(v′′(t))2 ≥

[
v2∗−2(t) − nK1

n − 4

]v2(t)
2∗

,

which proves the statement. �
Next, for t = 0, we write higher-order derivatives in terms of the first-order

derivative:

Lemma 18. We have

v(0) = 0, v′′(0) = (d − 2)v′(0), v′′′(0) =
n2 − 4n + 2d2 − 8d + 16

4
v′(0),

(8.4)

viv(0) =
(n2 − 4n + 8)(d − 2)

2
v′(0), vv(0) = A(n, d)v′(0), (8.5)

where 16A(n, d) = n2(n−4)2+16(3n2−12n+16)+4d(d−4)(n2−4n+8) > 0
since n ≥ 5 and d > 4.

Proof. In view of the change of variables (8.1), we may “translate” the
boundary conditions on u in terms of the boundary conditions on v. To this
end, we use the formulas in [11, Section 3] to obtain

u′(1) = v′(0) , u′′(1) = v′′(0) − (n − 3)v′(0) ,

u′′′(1) = v′′′(0) − 3
2
(n − 2)v′′(0) +

3n2 − 12n + 8
4

v′(0).

Hence, v satisfies v(0) = 0 and v′′(0) + (2 − d)v′(0) = 0. Moreover, (3.3)
becomes first 2u′′′(1) + 2(n − 1)u′′(1) + (2(1 − n) + d(n − d))u′(1) = 0 and
subsequently 4v′′′(0)+2(4−n)v′′(0)+(2d(n−d)−n2)v′(0) = 0. This proves
(8.4).
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From equation (8.2) we infer viv(0) = K2v
′′(0) so that (8.4) yields the

first of (8.5). Moreover, by differentiating (8.2), we obtain vv(t)−K2v
′′′(t)+

K1v
′(t) = n+4

n−4v
8

n−4 (t)v′(t) so that the so-far-proved relations show that also
the second of (8.5) holds. �

In order to apply Lemma 18, we prove some identities concerning v′(0):

Lemma 19. The following identities hold:

d(d−4)(d−n)(d+n−4)|v′(0)|2 =
32(n + 4)
(n − 4)2

∫ 0

−∞
v

12−n
n−4 (t)[v′(t)]3 dt , (8.6)

(d − n)(d − 4)
2

v′(0) =
∫ 0

−∞
ent/2v

n+4
n−4 (t) dt , (8.7)

d(d − n)
2

v′(0) =
∫ 0

−∞
e(n−4)t/2v

n+4
n−4 (t) dt . (8.8)

Proof. We multiply equation (8.2) by v′′′(t) and integrate over (−∞, 0) to
obtain∫ 0

−∞
viv(t)v′′′(t) dt − K2

∫ 0

−∞
v′′(t)v′′′(t) dt + K1

∫ 0

−∞
v(t)v′′′(t) dt

=
∫ 0

−∞
v

n+4
n−4 (t)v′′′(t) dt .

By (8.1) we know that v and its derivatives vanish as t → −∞; therefore,
with two integrations by parts the previous identity becomes

1
2
|v′′′(0)|2 − K2

2
|v′′(0)|2 − K1

2
|v′(0)|2 = −n + 4

n − 4

∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt .

(8.9)
Notice that a further integration by parts gives∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt

= − 8
n − 4

∫ 0

−∞
v

12−n
n−4 (t)[v′(t)]3 dt −

∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt ,

so that ∫ 0

−∞
v

8
n−4 (t)v′(t)v′′(t) dt = − 4

n − 4

∫ 0

−∞
v

12−n
n−4 (t)[v′(t)]3 dt .

By replacing this identity in (8.9) and by using (8.4) we obtain (8.6).
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Next, we multiply (8.2) by ent/2. Then, we may rewrite the equation as

d

dt

[
ent/2

(
v′′′(t) − n

2
v′′(t) − (n − 4)2

4
v′(t) +

n(n − 4)2

8
v(t)

)]
= ent/2v

n+4
n−4 (t) . (8.10)

By integrating (8.10) over (−∞, 0) and using (8.4) we obtain (8.7).
Finally, we multiply (8.2) by e(n−4)t/2. Then, we may rewrite the equation

as
d

dt

[
e(n−4)t/2

(
v′′′(t) − n − 4

2
v′′(t) − n2

4
v′(t) +

n2(n − 4)
8

v(t)
)]

= e(n−4)t/2v
n+4
n−4 (t) . (8.11)

By integrating (8.11) over (−∞, 0) and using (8.4) we obtain (8.8). �
We now prove the following:

Lemma 20. Assume that for all 4 < d < n there exists a solution vd to
(8.2). Then, as d → 4+, v′d(0) remains bounded and vd(t) → 0 for all t ≤ 0.

Proof. From Lemma 17 and (8.8) we obtain

d(n − d)
2

|v′d(0)| =
∫ 0

−∞
e(n−4)t/2v

n+4
n−4

d (t) dt ≤ C

∫ 0

−∞
e(n−4)t/2 dt = C ′ .

This proves the first statement. Using this fact in (8.7) yields∫ 0

−∞
ent/2v

n+4
n−4

d (t) dt → 0 as d → 4+ .

The proof of the lemma is thus complete. �
We may now complete the proof of Theorem 7. Using (8.1) it is not

difficult to rewrite (8.7)–(8.8) as

(d − n)(d − 4)
2

u′
d(1) =

∫ 1

0
rn+1u

n+4
n−4

d (r) dr ,

d(d − n)
2

u′
d(1) =

∫ 1

0
rn−1u

n+4
n−4

d (r) dr .

Moreover, (8.6) reads

d(d − 4)(d − n)(d + n − 4)|u′
d(1)|2

= 4(n2 − 16)
∫ 1

0
rn−1u2∗

d (r) dr + 24(n + 4)
∫ 1

0
rnu2∗−1

d (r)u′
d(r) dr

+
48(n + 4)

n − 4

∫ 1

0
rn+1u2∗−2

d (r)|u′
d(r)|2 dr
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+
32(n + 4)
(n − 4)2

∫ 1

0
rn+2u2∗−3

d [u′
d(r)]

3 dr .

The third identity then follows by integrating by parts the second integral.
Finally, Lemma 20 states that, as d → 4+, u′

d(1) remains bounded and
ud(r) → 0 for all r > 0.

Remark 21. Instead of performing the change of variables (8.1) and using
the equation (8.2), one could also try to argue directly on equation (3.1).
In this case, one should replace the energy functional (8.3) with the one
suggested in [16]. More precisely, one can show that

2ru′(r)(Δu)′(r) + (n − 4)u(r)(Δu)′(r)+

+nu′(r)Δu(r) − n − 4
n

ru2∗(r) − r|Δu(r)|2 ≡ 0 (r ∈ [0, 1]) .

However, with this alternative approach it seems much more difficult to
obtain a result like Lemma 17, which is crucial in the proof of Lemma 20.
Moreover, although it is not a fundamental identity, (8.6) seems out of reach
without using (8.1).
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