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Abstract

By considering the kernels of the first two traces, four different second order Sobolev spaces may
be constructed. For these spaces, embeddings into Lebesgue spaces, the best embedding constant and
the possible existence of minimizers are studied. The Euler equation corresponding to some of these
minimization problems is a semilinear biharmonic equation with boundary conditions involving third
order derivatives: it is shown that the complementing condition is satisfied.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and main results

We are interested in best constants and existence of minimizers for embeddings of sec-
ond order Hilbertian Sobolev spaces. For a smooth open domain Ω ⊂ R

n (n � 5), not
necessarily bounded, we consider the space

H 2(Ω) = {
u ∈ L2(Ω); D2u ∈ L2(Ω)

}
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where D2u denotes the (generalized) Hessian matrix of u. It is well known [1] that if
Ω �≡ R

n, then any function u ∈ H 2(Ω) admits some traces on the boundary ∂Ω . In partic-
ular, there exist two linear continuous operators

γ0 :H 2(Ω) → H 3/2(∂Ω) and γν :H 2(Ω) → H 1/2(∂Ω)

such that γ0u = u|∂Ω and γνu = ∂u
∂ν

|∂Ω for all u ∈ C1(Ω); here and in the sequel ν denotes
the unit outward normal to ∂Ω . The kernels of these traces give rise to proper subspaces
of H 2(Ω) which we denote by

H 2
0 (Ω) = kerγ0 ∩ kerγν, H 2 ∩ H 1

0 (Ω) = kerγ0, H 2
ν (Ω) = kerγν.

If Ω = R
n the traces are undefined and H 2

0 (Rn) = H 2 ∩ H 1
0 (Rn) = H 2

ν (Rn) = H 2(Rn).
For general domains Ω , we consider embeddings of these spaces into Lp(Ω) for
2 < p � 2∗ = 2n/(n − 4) (the critical Sobolev exponent). More precisely, we seek some
properties of the best embedding constants and we investigate the existence or nonexis-
tence of minimizers for the corresponding ratio.

Due to a lack of compactness, this problem becomes much more difficult when p = 2∗.
In this case we only have partial answers and several problems are left open. When
Ω = R

n, we denote by D2,2 the closure of the space of smooth compactly supported func-
tions in R

n with respect to the norm ‖D2 · ‖2; here and in the sequel, ‖ · ‖q represents
the usual Lq -norm. Two integration by parts show that ‖D2u‖2

2 = ‖Δu‖2
2 for all u ∈ D2,2.

Then, the best constant for the embedding D2,2 ⊂ L2∗
(Rn) may be characterized by

S = inf
{∥∥D2u

∥∥2
2; u ∈D2,2, ‖u‖2∗ = 1

} = inf
{‖Δu‖2

2; u ∈ D2,2, ‖u‖2∗ = 1
}
. (1)

Up to translations and nontrivial real multiples, the infimum in (1) is achieved only by the
functions

uε(x) = [(n − 4)(n − 2)n(n + 2)](n−4)/8ε(n−4)/2

(ε2 + |x|2)(n−4)/2
, (2)

for any ε > 0, see [6, Theorem 2.1] and also [12, Theorem 4], [8, Theorem 1.3], [7,
Lemma 2].

In fact, for any domain Ω ⊆ R
n, the spaces H 2

0 (Ω) and H 2 ∩H 1
0 (Ω) are Banach spaces

(Hilbert spaces) when endowed with the norm

u �→ ‖Δu‖2. (3)

It is shown in [13] that for any smooth domain Ω ⊂ R
n we have

inf
{‖Δu‖2

2; u ∈ H 2
0 (Ω), ‖u‖2∗ = 1

}
= inf

{‖Δu‖2
2; u ∈ H 2 ∩ H 1

0 (Ω), ‖u‖2∗ = 1
} = S

although the infimum is not achieved if Ω �= R
n. Hence, not only the best embedding

constant is independent of the domain Ω , but it is also independent of kerγν .
On the other hand, due to the invariance up to the addition of constants (respectively

affine functions), if we consider the space H 2
ν (Ω) (respectively the whole space H 2(Ω))

then (3) is no longer a norm. In these cases, one has also to take into account the L2(Ω)-
norm of the function and of all its second order derivatives, while first order derivatives
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can still be neglected thanks to interpolation theory, see, e.g., [1, Theorem 4.14]. In other
words, for any a > 0 both H 2(Ω) and H 2

ν (Ω) become Banach spaces when endowed with
the norm

u �→ (∥∥D2u
∥∥2

2 + a‖u‖2
2

)1/2
. (4)

We are so led to introduce the embedding constants

Σ(Ω,a) = inf
{∥∥D2u

∥∥2
2 + a‖u‖2

2; u ∈ H 2(Ω), ‖u‖2∗ = 1
}
,

Σν(Ω,a) = inf
{∥∥D2u

∥∥2
2 + a‖u‖2

2; u ∈ H 2
ν (Ω), ‖u‖2∗ = 1

}
(a > 0). (5)

In Section 2 we prove

Theorem 1. Assume that n � 5 and let S be as in (1). Then, for any a > 0 we have:

(i) Σ(Rn, a) = S and it is not achieved;
(ii) if Ω ⊂ R

n is a smooth bounded domain, then Σ(Ω,a) < S/24/n.

In order to prove Theorem 1(ii), we strongly use the smoothness of ∂Ω and the positivity
of the mean curvature in some boundary point x. For this reason, and because a similar
result holds in the first order case, it is reasonable to conjecture that for the half space R

n+
we have

Σ
(
R

n+, a
) = S

24/n
and it is not achieved. (6)

However, a proof of (6) seems rather difficult. This difficulty was already emphasized by
van der Vorst [13, Remark, p. 267] where the simpler case of the space H 2 ∩H 1

0 (instead of
H 2) is considered. The impossibility of using a reflection argument already present in the
H 2 ∩H 1

0 setting, is here further complicated because we cannot make use of the maximum
and the comparison principles.

We can prove a much weaker version of (6); we state this result for “flat” and “non-
smooth” domains. More precisely, we consider the domains

R
n
k+ := (0,∞)k × R

n−k, k = 1, . . . , n,

and we prove

Theorem 2. Assume that n � 5. For any a > 0 and any k = 1, . . . , n we have

Σν
(
R

n
k+, a

) = S

24k/n

and the infimum is not achieved. In particular, Σν(Rn+, a) = S/24/n.

Next, for any bounded domain Ω and any 2 < p � 2∗, we consider the following num-
bers:
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Σp(Ω,a) = inf
u∈H 2(Ω)\{0}

‖D2u‖2
2 + a‖u‖2

2

‖u‖2
p

,

Σν
p(Ω,a) = inf

u∈H 2
ν (Ω)\{0}

‖D2u‖2
2 + a‖u‖2

2

‖u‖2
p

. (7)

Then, we prove

Theorem 3. Assume that Ω is a smooth bounded domain of R
n (n � 5), that a > 0 and

that 2 < p < 2∗. Then the infima in (7) are achieved. Moreover, there exists a(p) � 0 such
that if a � a(p), then the minimizers of (7) are nonconstant.

In Section 5 we show that, up to a Lagrange multiplier, minimizers u of Σp(Ω,a)

(respectively Σν
p(Ω,a)) as defined in (7), satisfy∫

Ω

(
D2uD2v + auv − |u|p−2uv

) = 0 for all v ∈ H 2(Ω) (8)

(respectively for all v ∈ H 2
ν (Ω)), where D2uD2v denotes the “scalar product” between

Hessian matrices, namely

D2uD2v =
n∑

i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj

for all u,v ∈ H 2(Ω).

For all j , let νj = ∂ν
∂xj

= cos(ν, xj ) denote the j th component of ν, the normal vector
to the boundary ∂Ω . Let {tk = tk(x); k = 1, . . . , n − 1; x ∈ ∂Ω} denote a system of local
tangential coordinates to ∂Ω so that {t1, . . . , tn−1, ν} is a complete orthonormal system
diffeomorphic to {x1, . . . , xn}. As pointed out by P.L. Lions [10, p. 76], the boundary con-
ditions associated to (8) do not depend on the choice of the system {t1, . . . , tn−1}. Then,
we have

Theorem 4. Assume that Ω is a smooth bounded domain of R
n (n � 5), that a > 0 and

that 2 < p � 2∗. Assume that u ∈ H 2(Ω) (or u ∈ H 2
ν (Ω)) satisfies (8). Then, u ∈ C4,α(Ω)

and u is a classical solution of

Δ2u + au = |u|p−2u in Ω (9)

satisfying the boundary conditions (if u ∈ H 2(Ω))

∂2u

∂ν2
= 2

∂Δu

∂ν
− ∂3u

∂ν3
+

n∑
i,j=1

n−1∑
k=1

∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

)
= 0 on ∂Ω,1 (10)

or the boundary conditions (if u ∈ H 2
ν (Ω))

∂u

∂ν
= 2

∂Δu

∂ν
− ∂3u

∂ν3
+

n∑
i,j=1

n−1∑
k=1

∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

)
= 0 on ∂Ω. (11)

1 Here, ∂2u
2 := ∑n ∂2u νiνj and ∂3u

3 := ∑n ∂3u νiνj νk .

∂ν i,j=1 ∂xi ∂xj ∂ν i,j,k=1 ∂xi ∂xj ∂xk
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In particular, Theorem 4 tells us that minimizers of (7) (if they exist!) are smooth func-
tions. Moreover, since a solution of (9) may be sign-changing, further regularity seems to
be false in general, at least for noninteger values of p.

Remark 1. In some cases the boundary conditions may be significantly simplified.
First, assume that ∂Ω is “somewhere flat,” namely that there exists Γ ⊂ ∂Ω of pos-

itive (n − 1)-dimensional Hausdorff measure such that Γ ⊂ {xn = 0}. Then, the second
boundary condition in (10) becomes

∂3u

∂x3
n

− 2
∂Δu

∂xn

= 0 on Γ.

Second, assume that Ω is the unit ball and that u is radially symmetric, u = u(|x|);
note that we have no condition which ensures u to be radially symmetric! However, in
this case, (10) become u′′(1) = u′′′(1) − (n − 1)u′(1) = 0, while (11) become u′(1) =
u′′′(1) + (n − 1)u′′(1) = 0.

As far as we are aware, biharmonic semilinear elliptic equations as (9) have so far
been tackled only in the spaces H 2

0 (Ω) or H 2 ∩ H 1
0 (Ω) (where (3) is a norm). In the

first case, Dirichlet boundary conditions (u = ∂u
∂ν

= 0) arise, whereas in the second case
Navier boundary conditions (u = Δu = 0) appear. Hence, the present paper is also a first
contribution to biharmonic semilinear problems with boundary conditions (10) and (11).

Note that (8) admits the two constant solutions

u0 ≡ 0, u1 ≡ a1/(p−2). (12)

It is therefore of some interest to find out whether (8) also admits nonconstant solutions.
As a consequence of Theorems 3 and 4, we obtain

Corollary 1. Assume that Ω is a smooth bounded domain of R
n (n � 5) and that

2 < p < 2∗. There exists a(p) � 0 such that if a � a(p), then (8) admits a C4,α(Ω) non-
constant solution.

Corollary 1 nothing says about small values of a. In the second order subcritical case, it
is known [9] that for sufficiently small a, the corresponding equation only admits constant
solutions. In the critical case, counterexamples in [3] show that a similar result is false
in general; nevertheless, it is proved in [4] that the mountain-pass solution (or minimal
energy solution) is constant for sufficiently small a. These results are obtained by showing
that for small a any solution u satisfies u ≡ u, where u is the mean value of u. In turn, this
is obtained by using Wirtinger’s inequality which enables to estimate ‖u − u‖2 in terms of
‖∇u‖2. In the fourth order equation, one would need an a priori estimate of ‖u − u‖2 in
terms of ‖D2u‖2, which does not hold in general. Hence, the following question naturally
arises: is it true that for sufficiently small a, (8) only admits constant solutions or that the
mountain-pass solution is constant? We have no answer to this question but we have some
reasons to believe that it might be negative.

Another question which arises in connection with Corollary 1 is the sign of the solu-
tions of (8). For the corresponding first order minimization problem, it is clear that u is
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a minimizer if and only if |u| is a minimizer; this shows that a minimizer may be chosen
nonnegative (in fact positive by the maximum principle). For the second order minimiza-
tion problems considered in the present paper, this simple trick fails since |u| may not be
in H 2(Ω). On the other hand, a simple application of the divergence theorem enables us
to prove

Theorem 5. Assume that Ω is a smooth bounded domain of R
n (n � 5), that 2 < p � 2∗

and that a = 0. Let u � 0 be a solution of (8); then u ≡ 0.

In view of the above discussion, it is clear that Theorem 5 is not satisfactory. One should
also exclude the existence of sign-changing solutions.

2. Proof of Theorem 1

2.1. Proof of (i)

Let B = {u ∈ D2,2; ‖u‖2∗ = 1}. For any a > 0, we have

S = inf
u∈B

∥∥D2u
∥∥2

2 � inf
u∈B∩H 2(Rn)

∥∥D2u
∥∥2

2 � inf
u∈B∩H 2(Rn)

(∥∥D2u
∥∥2

2 + a‖u‖2
2

)
= Σ

(
R

n, a
)
, (13)

where the first inequality follows from the (proper) inclusion H 2(Rn) ⊂ D2,2.
In order to show the converse inequality, we construct a suitable minimizing sequence.

For all ε > 0 consider the radial function

vε(r) := uε(r) − uε(1)

where uε(|x|) = uε(x) is defined in (2). Let now

zε(r) =
⎧⎨
⎩

vε(r) if r ∈ [0,1/2],
wε(r) if r ∈ [1/2,1],
0 if r ∈ [1,∞)

(14)

where wε(r) = aε(r −1)3 +bε(r −1)2 and aε , bε are chosen in such a way that wε(1/2) =
vε(1/2) and w′

ε(1/2) = v′
ε(1/2). Hence, zε ∈ H 2(Rn) for all ε > 0; note that if n > 8, then

uε ∈ H 2(Rn) and instead of {zε} one can directly take {uε}.
A simple computation shows that limε→0 aε = limε→0 bε = 0 so that, if we let ε → 0,

we obtain∫
Rn

∣∣D2zε

(|x|)∣∣2 =
∫

B1/2

∣∣D2uε

(|x|)∣∣2 + o(1) = Sn/4 + o(1),

∫
Rn

∣∣zε

(|x|)∣∣2∗ =
∫

B1/2

∣∣uε

(|x|)∣∣2∗ + o(1) = Sn/4 + o(1),

∫
n

∣∣zε

(|x|)∣∣2 = o(1). (15)
R
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Finally, set Zε := zε/‖zε‖2∗ so that Zε ∈ B∩H 2(Rn). Therefore, by definition of Σ(Rn, a)

and by (15) we have

Σ
(
R

n, a
)
�

∥∥D2Zε

∥∥2
2 + a‖Zε‖2

2 for all ε > 0,

lim
ε→0

(∥∥D2Zε

∥∥2
2 + a‖Zε‖2

2

) = S. (16)

The first part of statement (i) in Theorem 1 follows at once from (13) and (16). The sec-
ond part is readily obtained by contradiction: if the infimum is achieved, then the minimizer
would violate the Sobolev inequality ‖D2u‖2

2 � S which holds for all u ∈ B .

2.2. Proof of (ii)

Here, we take into account the effect of the curvature of the boundary ∂Ω , following
an idea from [2,14]. Since Ω is smooth and bounded, there exists x ∈ ∂Ω such that in a
neighborhood of x, Ω lies on one side of the tangent hyperplane at x and the mean curva-
ture with respect to the unit outward normal at x is positive. With a change of coordinates,
we may assume that x = 0 (the origin), that the tangent hyperplane coincides with xn = 0
and that Ω lies locally in R

n+ = {x = (x′, xn); xn > 0}. More precisely, there exists R > 0
and a smooth function ρ :ω → R+ (where ω = {x′ ∈ R

n−1; |x′| < R}) such that

(x′, xn) ∈ Ω ∩ BR ⇔ xn > ρ(x′),
(x′, xn) ∈ ∂Ω ∩ BR ⇔ xn = ρ(x′).

Furthermore, since the curvature is positive at 0, there exist λi (i = 1, . . . , n − 1) such that
n−1∑
i=1

λi > 0 and ρ(x′) =
n−1∑
i=1

λix
2
i + O

(|x′|3) as x′ → 0. (17)

Let Λ := {x ∈ BR; 0 < xn < ρ(x′)}. Fix σ > 0 sufficiently small so that

L := (−σ,σ )n ⊂ BR/4

and define

Δ := (−σ,σ )n−1.

Let φ be a radial C∞ function such that 0 � φ � 1 and

φ(r) =
{

1 if r � R/4,

0 if r � R/2

and define the function Uε(x) := φ(|x|)uε(x). For our convenience, we set μn =
ωn−1

∑n−1
i=1 λi and Cn := [(n − 4)(n − 2)n(n + 2)](n−4)/8. We claim that, as ε → 0:

∫
Ω

∣∣D2Uε

∣∣2 = Sn/4

2
−

⎧⎨
⎩

2 4
√

105μ5ε log 1
ε

if n = 5,

C2
n

(n−4)2

8(n−1)2 (n3 + 2n2 − 9n − 2)μn
Γ

( n+1
2

)
Γ

( n−5
2

)
Γ (n−2)

ε if n � 6

⎫⎬
⎭

+ o(ε), (18)∫
U2∗

ε = Sn/4

2
− C2∗

n μn

2(n − 1)

Γ
(

n+1
2

)
Γ

(
n−1

2

)
Γ (n)

ε + o(ε). (19)
Ω
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Postponing the proofs of (18) and (19), we conclude the proof of statement (ii). Note first
that as ε → 0 we have

∫
Ω

U2
ε =

∫
Ω∩BR/2

U2
ε �

∫
BR/2

u2
ε =

⎧⎪⎨
⎪⎩

O(ε4) if n > 8,

O
(
ε4 log 1

ε

)
if n = 8,

O(εn−4) if n = 5,6,7.

(20)

By using (18)–(20), we obtain for all a > 0:

Σ(Ω,a)

�
‖D2Uε‖2

2 + a‖Uε‖2
2

‖Uε‖2
2∗

= S

24/n
−

⎧⎪⎨
⎪⎩

μnC
2
n21−4/nS1−n/4 (n−4)2(n2−n−4)

(n−1)2
Γ

( n+1
2

)
Γ

( n−5
2

)
Γ (n−2)

ε + o(ε) if n � 6,

μ543/5 4
√

105
S

ε log 1
ε

+ O(ε) if n = 5.

Clearly, this last term becomes strictly less than S/24/n for sufficiently small ε so (ii)
follows.

Proof of (18). We split the integral as∫
Ω

∣∣D2Uε

∣∣2 = 1

2

∫
BR

+
∫

Ω\BR

−
∫

Λ∩L

−
∫

Λ\L
. (21)

In view of the estimates in [6, (3.23)], we have

1

2

∫
BR

∣∣D2Uε

∣∣2 = 1

2
Sn/4 + O

(
εn−4), ∫

Ω\BR

∣∣D2Uε

∣∣2 = O
(
εn−4),

∫
Λ\L

∣∣D2Uε

∣∣2 = O
(
εn−4).

Therefore, (18) will follow if we show that∫
Λ∩L

∣∣D2Uε

∣∣2 ≈
⎧⎨
⎩

2 4
√

105μ5ε log 1
ε

if n = 5,

C2
n

(n−4)2

8(n−1)2 (n3 + 2n2 − 9n − 2)μn
Γ

( n+1
2

)
Γ

( n−5
2

)
Γ (n−2)

ε if n � 6.
(22)

By computing |D2uε|2, we obtain∫
Λ∩L

∣∣D2Uε

∣∣2 = C2
n(n − 4)2εn−4

[(
n2 − 5n + 8

) ∫
Λ∩L

dx

(ε2 + |x|2)n−2

+ (n − 2)2ε4
∫

Λ∩L

dx

(ε2 + |x|2)n

− 2(n − 2)(n − 3)ε2
∫

dx

(ε2 + |x|2)n−1

]
. (23)
Λ∩L
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We now estimate the three integrals in (23). With the change of variables xn =√
ε2 + |x′|2 · yn and using

∫ s

0 (1 + t2)b dt = s + O(s3) for all b < 0, we obtain

∫
Λ∩L

dx

(ε2 + |x|2)n−2
=

∫
Δ

ρ(x′)∫
0

dxn dx′

(ε2 + |x′|2 + x2
n)n−2

=
∫
Δ

ρ(x′)√
ε2+|x′|2∫
0

dyn

(1 + y2
n)n−2

dx′

(ε2 + |x′|2)n−5/2

=
∫
Δ

ρ(x′)
(ε2 + |x′|2)n−2

dx′ + O

(∫
Δ

ρ3(x′)
(ε2 + |x′|2)n−1

dx′
)

. (24)

We are so led to estimate∫
Δ

ρ(x′)
(ε2 + |x′|2)n−2

dx′

=
n−1∑
i=1

λi

∫
Δ

x2
i

(ε2 + |x′|2)n−2
dx′ + O

(∫
Δ

|x′|3
(ε2 + |x′|2)n−2

dx′
)

=
∑n−1

i=1 λi

n − 1
ε5−n

∫
Δ/ε

|y|2
(1 + |y|2)n−2

dy + O

(
ε6−n

∫
Δ/ε

|y|3
(1 + |y|2)n−2

dy

)
(25)

where we used (17), the change of variables x′ = εy and the following identity:∫
Δ

x2
i

(ε2 + |x′|2)n−2
dx′ = 1

n − 1

∫
Δ

|x′|2
(ε2 + |x′|2)n−2

dx′.

We now distinguish two cases.
Case n � 6. In this case

lim
ε→0

∫
Δ/ε

|y|2
(1 + |y|2)n−2

dy =
∫

Rn−1

|y|2
(1 + |y|2)n−2

dy = ωn−1

∞∫
0

rn

(1 + r2)n−2
dr

= ωn−1
Γ

(
n+1

2

)
Γ

(
n−5

2

)
2Γ (n − 2)

.

Case n = 5. In this case Bσ ⊂ Δ ⊂ B2σ ⊂ R
4. Moreover,

∫
B2σ/ε\Bσ/ε

|y|2
(1 + |y|2)3

dy = ω4

2σ/ε∫
σ/ε

r5

(1 + r2)3
dr � ω4

2σ/ε∫
σ/ε

dr

r
= ω4 log 2.
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Hence, if n = 5, as ε → 0 we get

∫
Δ/ε

|y|2
(1 + |y|2)3

dy =
∫

|y|<σ/ε

|y|2
(1 + |y|2)3

dy + O(1) = ω4

σ/ε∫
0

r5

(1 + r2)3
dr + O(1)

= ω4 log
1

ε
+ O(1).

Furthermore, the same arguments enable us to show that

ε6−n

∫
Δ/ε

|y|3
(1 + |y|2)n−2

dy =

⎧⎪⎨
⎪⎩

O(ε6−n) if n � 7,

O
(
log 1

ε

)
if n = 6,

O(1) if n = 5.

Recalling the definition of μn, and inserting all the above estimates into (25), we obtain

∫
Δ

ρ(x′)
(ε2 + |x′|2)n−2

dx′ ≈ μn

n − 1

⎧⎨
⎩

Γ
( n+1

2
)
Γ

( n−5
2

)
2Γ (n−2)

ε5−n if n � 6,

log 1
ε

if n = 5.

(26)

Once more, one can use the same arguments as above to show that

∫
Δ

ρ3(x′)
(ε2 + |x′|2)n−1

dx′ =

⎧⎪⎨
⎪⎩

O(ε7−n) if n � 8,

O
(
log 1

ε

)
if n = 7,

O(1) if n = 5,6,

which, together with (24) and (26), yields

∫
Λ∩L

dx

(ε2 + |x|2)n−2
≈ μn

n − 1

⎧⎨
⎩

Γ
( n+1

2
)
Γ

( n−5
2

)
2Γ (n−2)

ε5−n if n � 6,

log 1
ε

if n = 5.

(27)

In exactly the same way, we may estimate the other integrals in (23) and obtain (as ε → 0):

ε4
∫

Λ∩L

dx

(ε2 + |x|2)n ≈ μn

n − 1

Γ
(

n+1
2

)
Γ

(
n−1

2

)
2Γ (n)

ε5−n,

ε2
∫

Λ∩L

dx

(ε2 + |x|2)n−1
≈ μn

n − 1

Γ
(

n+1
2

)
Γ

(
n−3

2

)
2Γ (n − 1)

ε5−n. (28)

Taking into account the properties of the gamma function, and inserting (27) and (28) into
(23) gives (22) so that the proof of (18) is complete. �
Proof of (19). We also split

∫
Ω

U2∗
ε according to (21) and we use the estimates in [6,

(3.25)], so that

1

2

∫
U2∗

ε = 1

2
Sn/4 + O

(
εn

)
,

∫
U2∗

ε = O
(
εn

)
,

∫
U2∗

ε = O
(
εn

)
.

BR Ω\BR Λ\L
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Therefore, (19) will follow if we show that∫
Λ∩L

U2∗
ε = C2∗

n μn

2(n − 1)

Γ
(

n+1
2

)
Γ

(
n−1

2

)
Γ (n)

ε + o(ε). (29)

By arguing as for the Hessian norm, we obtain

∫
Λ∩L

U2∗
ε =

∫
Λ∩L

u2∗
ε = C2∗

n μn

(n − 1)
ε ·

∞∫
0

rn

(1 + r2)n
dr + o(ε)

and (29) follows at once. �

3. Proof of Theorem 2

Consider first the case k = 1 so that R
n
1+ = R

n+. Consider the functions zε introduced
in (14). By symmetry and (15) we deduce that zε ∈ H 2

ν (Rn+) and∫
R

n+

∣∣D2zε

(|x|)∣∣2 = Sn/4

2
+ o(1),

∫
R

n+

∣∣zε

(|x|)∣∣2∗ = Sn/4

2
+ o(1),

∫
R

n+

∣∣zε

(|x|)∣∣2 = o(1)

as ε → 0. Therefore

lim
ε→0

‖D2zε‖2
2 + a‖zε‖2

2

‖zε‖2
2∗

= S

24/n

which proves that

Σν
(
R

n+, a
)
� S

24/n
. (30)

For contradiction, assume that there exists v ∈ H 2
ν (Rn+) such that

‖D2v‖2
2 + a‖v‖2

2

‖v‖2
2∗

� S

24/n
(31)

and set

w(x′, xn) =
{

v(x′, xn) if xn � 0,

v(x′,−xn) if xn < 0.
(32)

Then, w ∈ H 2(Rn) and by doubling the integrals, we obtain

‖D2w‖2
2 + a‖w‖2

2

‖w‖2
� S
2∗
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which contradicts Theorem 1(i). Therefore, there exists no v ∈ H 2
ν (Rn+) such that (31)

holds. This means that

‖D2v‖2
2 + a‖v‖2

2

‖v‖2
2∗

>
S

24/n
for all v ∈ H 2

ν

(
R

n+
)

which, together with (30), shows that Σν(Rn+, a) = S

24/n and that the infimum is not
achieved.

The cases k = 2, . . . , n are similar; one should proceed with k iterated reflections as
(32).

4. Proof of Theorem 3

We only prove the result for Σp(Ω,a), the case Σν
p(Ω,a) being completely similar. Let

{um}m�0 ⊂ H 2(Ω) be a minimizing sequence for Σp(Ω,a) in (7) such that ‖um‖p = 1.
Then, {um}m�0 is bounded in H 2(Ω) and there exists u ∈ H 2(Ω) such that um ⇀ u in
H 2(Ω), up to a subsequence. By the compact embedding H 2(Ω) ⊂ Lp(Ω), we deduce
um → u in Lp(Ω) so that ‖u‖p = 1. Moreover, by lower semicontinuity of the norm with
respect to weak convergence we infer that∥∥D2u

∥∥2
2 + a‖u‖2

2 � Σp(Ω,a)

and we conclude.
In order to show that the minimizer for Σp(Ω,a) is nonconstant for sufficiently large a,

we have to rule out u1, see (12). To this end, for every u ∈ H 2(Ω) we define

f (u) := ‖D2u‖2
2 + a‖u‖2

2

‖u‖2
p

,

so that f (u1) = a|Ω|(p−2)/p . The proof of Theorem 3 will be complete once we find
a(p) � 0 such that

a|Ω|(p−2)/p > inf
u∈H 2(Ω)

f (u) for all a � a(p). (33)

Without loss of generality, we assume that 0 ∈ Ω ; then, we define the function

ϕa(x) =
{

(1 − a|x|4)2 for |x| < 1/ 4
√

a,

0 for |x| � 1/ 4
√

a

whose support is contained in Ω provided a is sufficiently large, say a � ã. For such a, we
have ϕa ∈ H 2(Ω) and we may compute f (ϕa); by straightforward computations in radial
coordinates one sees that

‖ϕa‖p
p = a−n/4Kp and

∥∥D2ϕa

∥∥2
2 = a1−n/4Cn,

where

Kp = ωn

1∫ (
1 − ρ4)2p

ρn−1 dρ and Cn = 64ωn

[
n + 48

n + 12
− 2(n + 20)

n + 8
+ n + 8

n + 4

]
.

0
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Summarizing, for every 2 < p < 2∗ and every a � ã, we have

f (ϕa) = Cn + K2

K
2/p
p

a
n

2p
− n

4 +1
.

Therefore, if a � ã (to ensure ϕa ∈ H 2(Ω)) and

a >

(
Cn + K2

K
2/p
p |Ω|(p−2)/p

)4p/n(p−2)

(34)

then f (u1) > f (ϕa) so that (33) holds and u1 is not a minimizer for (7).

Remark 2. Let p = 2∗ and suppose that we have proved that the minimum in (7) is
achieved. From Theorem 1(ii), we know that

inf
u∈H 2(Ω)

f (u) = Σ(Ω,a) <
S

24/n
.

Hence, (33) would follow if

a � S

(2|Ω|)4/n
.

On the other hand, if the minimum in (7) is achieved, then the lower bound (34) also holds
for p = 2∗. Combining these facts, would show that

a(2∗) � min

{
S

(2|Ω|)4/n
,

Cn + K2

K
2/2∗
2∗ |Ω|4/n

}
.

5. Proof of Theorem 4

If u ∈ H 2(Ω) (respectively u ∈ H 2
ν (Ω)) is a minimizer of (7), then there exists a La-

grange multiplier λ ∈ R \ {0} such that u is a critical point of F(u) := ‖D2u‖2
2 + a‖u‖2

2 +
λ(‖u‖p

p − 1), namely

F ′(u)[v] =
∫
Ω

(
2D2uD2v + 2auv + λp|u|p−2uv

) = 0 for all v ∈ H 2(Ω)

(
respectively v ∈ H 2

ν (Ω)
)
.

Then, u := (pλ/2)1/(p−2)u satisfies (8).
Next, let us recall the following integration by parts formula:∫

Ω

D2uD2v =
∫
Ω

Δ2uv −
∫

∂Ω

∂Δu

∂ν
v +

n∑
i,j=1

∫
∂Ω

∂2u

∂xi∂xj

∂v

∂xi

νj ,

∀u ∈ H 4(Ω), ∀v ∈ H 2(Ω), (35)

where νj = ∂ν
∂xj

= cos(ν, xj ) denotes the j th component of the normal ν. In order to high-
light the boundary conditions, we first transform the last boundary integral according to
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[10, pp. 75–76]; we introduce a system of local tangential coordinates to ∂Ω , namely
tk = tk(x1, . . . , xn) (k = 1, . . . , n − 1) so that (t1, . . . , tn−1, ν) is a complete orthonormal
system diffeomorphic to (x1, . . . , xn). Then, we write

n∑
i,j=1

∂2u

∂xi∂xj

∂v

∂xi

νj =
n∑

i,j=1

n−1∑
k=1

∂2u

∂xi∂xj

∂v

∂tk

∂tk

∂xi

νj +
n∑

i,j=1

∂2u

∂xi∂xj

∂v

∂ν
νiνj

and integrations by parts with respect to tangential coordinates yield

n∑
i,j=1

n−1∑
k=1

∫
∂Ω

∂2u

∂xi∂xj

∂v

∂tk

∂tk

∂xi

νj = −
n∑

i,j=1

n−1∑
k=1

∫
∂Ω

∂

∂tk

(
∂2u

∂xi∂xj

∂tk

∂xi

νj

)
v

so that (35) becomes

∫
Ω

D2uD2v =
∫
Ω

Δ2uv −
∫

∂Ω

∂Δu

∂ν
v −

n∑
i,j=1

n−1∑
k=1

∫
∂Ω

∂

∂tk

(
∂2u

∂xi∂xj

∂tk

∂xi

νj

)
v

+
∫

∂Ω

∂2u

∂ν2

∂v

∂ν
, (36)

which is precisely (5.19) in [10] with a = 1 and b = 0. By computing the derivative of the
product, we obtain

n∑
i,j=1

n−1∑
k=1

∫
∂Ω

∂

∂tk

(
∂2u

∂xi∂xj

∂tk

∂xi

νj

)
v

=
n∑

i,j=1

n−1∑
k=1

∫
∂Ω

∂

∂tk

(
∂2u

∂xi∂xj

)
∂tk

∂xi

νj v +
n∑

i,j=1

n−1∑
k=1

∫
∂Ω

∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

)
v.

(37)

Next, we remark that

∂3u

∂x2
i ∂xj

= ∂

∂xi

(
∂2u

∂xi∂xj

)
=

n−1∑
k=1

∂

∂tk

(
∂2u

∂xi∂xj

)
∂tk

∂xi

+ ∂

∂ν

(
∂2u

∂xi∂xj

)
νi for all i, j

and therefore

n∑
i,j=1

n−1∑
k=1

∂

∂tk

(
∂2u

∂xi∂xj

)
∂tk

∂xi

νj =
n∑

i,j=1

[
∂3u

∂x2
i ∂xj

− ∂

∂ν

(
∂2u

∂xi∂xj

)
νi

]
νj

= ∂Δu

∂ν
− ∂3u

∂ν3
. (38)

Plugging (38) into (37) gives
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n∑
i,j=1

n−1∑
k=1

∫
∂Ω

∂

∂tk

(
∂2u

∂xi∂xj

∂tk

∂xi

νj

)
v

=
∫

∂Ω

(
∂Δu

∂ν
− ∂3u

∂ν3
+

n∑
i,j=1

n−1∑
k=1

∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

))
v.

Finally, inserting this into (36) yields

∫
Ω

D2uD2v =
∫
Ω

Δ2uv +
∫

∂Ω

(
∂3u

∂ν3
− 2

∂Δu

∂ν
−

n∑
i,j=1

n−1∑
k=1

∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

))
v

+
∫

∂Ω

∂2u

∂ν2

∂v

∂ν
. (39)

According to formula (39), if u ∈ H 4(Ω) we may rewrite (8) as

∫
Ω

(
Δ2u + au − |u|p−2u

)
v +

∫
∂Ω

(
∂3u

∂ν3
− 2

∂Δu

∂ν
−

n∑
i,j=1

n−1∑
k=1

∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

))
v

+
∫

∂Ω

∂2u

∂ν2

∂v

∂ν
= 0 (40)

for all v ∈ H 2(Ω) (respectively v ∈ H 2
ν (Ω)). By taking v ∈ C∞

c (Ω) in (40), we see that

Δ2u + au − |u|p−2u = 0 a.e. in Ω. (41)

Consider first the case of test functions in H 2(Ω). For any φ ∈ C∞(∂Ω) let v ∈ C4(Ω)

be the unique solution of⎧⎨
⎩

Δ2v = 0 in Ω,
∂v
∂ν

= φ on ∂Ω,

v = 0 on ∂Ω.

Then, plugging v into (40) and recalling (41) entails∫
∂Ω

∂2u

∂ν2
φ = 0 for all φ ∈ C∞(∂Ω);

this clearly implies that

∂2u

∂ν2
= 0 on ∂Ω. (42)

Inserting (41) and (42) into (40) immediately yields

∂3u

∂ν3
− 2

∂Δu

∂ν
−

n∑ n−1∑ ∂2u

∂xi∂xj

∂

∂tk

(
∂tk

∂xi

νj

)
= 0 on ∂Ω. (43)
i,j=1 k=1
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We now consider the case of test functions in H 2
ν (Ω). Since also u ∈ H 2

ν (Ω), we have

∂u

∂ν
= 0 on ∂Ω, (44)

so that the last term in (40) vanishes. Hence, by (41), we obtain again (43).
We now need to justify the original assumption u ∈ H 4(Ω) made in order to obtain

(35) and (41). The first step consists in verifying that the boundary conditions satisfy the
complementing condition:

Lemma 1. The boundary conditions (42)–(43) (respectively (44)–(43)) satisfy the comple-
menting condition.

Proof. We follow the notations of [5, pp. 625–633]. Alternatively, one may also refer to
[11, Definition 8.28] for an equivalent formulation of the complementing condition.

Firstly, we have L′(ξ) = |ξ |4 for all ξ ∈ R
n. Therefore, if ν denotes the outward normal

to ∂Ω and ξ any vector parallel to ∂Ω , the polynomial τ �→ L′(ξ + τν) admits τ = i|ξ | as
double root with positive imaginary part. Hence,

M+(ξ, τ ) = (
τ − i|ξ |)2

.

Next, we notice that for the boundary conditions (42)–(43) we have respectively
B ′

1(ξ + τν) = τ 2 and B ′
2(ξ + τν) = 2|ξ |2τ + τ 3. Therefore,

B ′
1(ξ + τν) = |ξ |(2iτ + |ξ |) mod

[
M+(ξ, τ )

]
,

B ′
2(ξ + τν) = |ξ |2(−τ + 2i|ξ |) mod

[
M+(ξ, τ )

];
since τ �→ |ξ |(2iτ + |ξ |) and τ �→ |ξ |2(−τ + 2i|ξ |) are linearly independent (as poly-
nomials of the variable τ ), the boundary conditions (42)–(43) satisfy the complementing
condition.

For the boundary conditions (44)–(43) only B ′
1 changes and becomes B ′

1(ξ + τν) = τ .
Therefore,

B ′
1(ξ + τν) = τ mod

[
M+(ξ, τ )

]
,

B ′
2(ξ + τν) = |ξ |2(−τ + 2i|ξ |) mod

[
M+(ξ, τ )

];
since τ �→ τ and τ �→ |ξ |2(−τ + 2i|ξ |) are linearly independent, also the boundary condi-
tions (44)–(43) satisfy the complementing condition. �

Arguing as in [13], we may now prove:

Lemma 2. Assume that u ∈ H 2(Ω) (respectively u ∈ H 2
ν (Ω)) satisfies (8). Then,

u ∈ Lq(Ω) for all 1 � q < ∞.

Proof. Since the proofs are similar, we prove the lemma only in the case where u ∈
H 2(Ω). Note first that by Lax–Milgram theorem, for any w ∈ L2n/(n+4)(Ω) there exists
a unique u ∈ H 2(Ω) such that∫ (

D2uD2v + auv
) =

∫
wv for all v ∈ H 2(Ω).
Ω Ω
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This defines a Green function G :L2n/(n+4)(Ω) → H 2(Ω) such that G(w) = u where u

is the unique solution of the above variational problem; by what we have proved above,
u formally satisfies (42)–(43).

Next, let α(x) := |u(x)|p−2 (recall 2 < p � 2∗). Then, by assumption, α ∈ Ln/4(Ω)

and u satisfies

Δ2u + au = α(x)u in D′(Ω), (45)

see (35) and (41). By [13, Lemma B2], for any ε > 0 there exist gε ∈ Ln/4(Ω) and fε ∈
L∞(Ω) such that ‖gε‖n/4 < ε and (45) reads Δ2u+au = gε(x)u+fε(x) or, equivalently,

u − Gε(u) = hε, (46)

where hε = G(fε), Gε(u) = G(gεu) and G denotes the above defined Green function for
the operator (Δ2 + a) with the boundary conditions (42)–(43). Fix any q ∈ [1,∞); using
the Hardy–Littlewood–Sobolev inequality and repeating the arguments of Step 2, p. 272
in [13], one obtains that Gε :Lq(Ω) → Lq(Ω) and that if ε is sufficiently small, then
‖Gε‖Lq→Lq < 1

2 . Finally, Step 3, p. 273 in [13] may be repeated with no modifications.
This proves the lemma. �
Proof of Theorem 4. We use Schauder estimates and we argue as in the proof of
[13, Lemma B3]. More precisely, Lemmas 1 and 2 imply that u ∈ W 4,p(Ω) for all
1 � p < ∞; embedding theorems and smoothness of ∂Ω then show that u ∈ C3,α(Ω).
Hence, |u|p−2u ∈ C0,α(Ω) so that Schauder theory finally yields u ∈ C4,α(Ω). Therefore,
u is a classical solution of (9) which satisfies the boundary conditions (42)–(43) or (44)–
(43). This completes the proof. �

6. Proof of Theorem 5

Let a = 0 and let u � 0 be a solution of (8). By taking v ≡ 1 in (8), we infer∫
Ω

up−1 = 0

which implies at once that u ≡ 0.
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