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Abstract

By considering the kernels of the first two traces, four different second order Sobolev spaces may
be constructed. For these spaces, embeddings into Lebesgue spaces, the best embedding constant and
the possible existence of minimizers are studied. The Euler equation corresponding to some of these
minimization problems is a semilinear biharmonic equation with boundary conditions involving third
order derivatives: it is shown that the complementing condition is satisfied.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and main results

We are interested in best constants and existence of minimizers for embeddings of sec-
ond order Hilbertian Sobolev spaces. For a smooth open domain 2 C R" (n > 5), not
necessarily bounded, we consider the space

H*(2) ={u e L*(2); D*ue L*(2))
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where D2u denotes the (generalized) Hessian matrix of u. It is well known [1] that if
§2 # R", then any function u € H 2(£2) admits some traces on the boundary 9£2. In partic-
ular, there exist two linear continuous operators

vo: H*(2) > H¥?(32) and y,:H*(2)—> H'?*3£2)

such that ypu = uly and yyu = g—’s lag2 forallu e C'(£2); here and in the sequel v denotes
the unit outward normal to 02. The kernels of these traces give rise to proper subspaces
of H2(§2) which we denote by

HE(£2) =ker yo Nkeryy, H? N HJ (2) =ker yp, H2(22) =kery,.

If 2 =R" the traces are undefined and HJ(R") = H> N Hy (R") = HZ(R") = H*(R").
For general domains 2, we consider embeddings of these spaces into L”(£2) for
2 < p <2*=2n/(n —4) (the critical Sobolev exponent). More precisely, we seek some
properties of the best embedding constants and we investigate the existence or nonexis-
tence of minimizers for the corresponding ratio.

Due to a lack of compactness, this problem becomes much more difficult when p = 2*.
In this case we only have partial answers and several problems are left open. When
2 =R", we denote by D2 the closure of the space of smooth compactly supported func-
tions in R” with respect to the norm || D? - ||2; here and in the sequel, || - l; represents
the usual L?-norm. Two integration by parts show that || D%u ||% = ||Au ||% for all u € D>2.
Then, the best constant for the embedding D>?* C LY (R™) may be characterized by

2 .
s u e D2, lullr = 1) = inf{ | Aull3; w € D>, flull2 =1} (1)

S =inf{|| D?ul|5;

Up to translations and nontrivial real multiples, the infimum in (1) is achieved only by the

functions

[(n = 4) (1 = Dn(n +2)| "~ VB =D/
(& + 1P ’

for any ¢ > 0, see [6, Theorem 2.1] and also [12, Theorem 4], [8, Theorem 1.3], [7,

Lemma 2].

In fact, for any domain £2 C R”, the spaces Hg(.Q) and HZN H(} (£2) are Banach spaces
(Hilbert spaces) when endowed with the norm

@

ug(x) =

u > || Aullz. 3
It is shown in [13] that for any smooth domain £2 C R” we have

inf{ | Aull3; u € HJ($2), llull» =1}
=inf{||Aull3; u € H* N Hy (), |lull» =1} =S

although the infimum is not achieved if §2 % R”". Hence, not only the best embedding
constant is independent of the domain £2, but it is also independent of ker y,,.

On the other hand, due to the invariance up to the addition of constants (respectively
affine functions), if we consider the space Hvz(.Q) (respectively the whole space H 2(2))
then (3) is no longer a norm. In these cases, one has also to take into account the L2(£2)-
norm of the function and of all its second order derivatives, while first order derivatives



720 E. Berchio, F. Gazzola / J. Math. Anal. Appl. 320 (2006) 718-735

can still be neglected thanks to interpolation theory, see, e.g., [1, Theorem 4.14]. In other
words, for any a > 0 both H 2(.Q) and Hvz(.Q) become Banach spaces when endowed with
the norm

ur> (| D% +allul3) . 4)
We are so led to introduce the embedding constants

2(2,a) = inf{| D?u +allul3; ue HX (), lull» =1},

2V(£2,a) =inf] ||D2u||§ +alull3; ue HX(2), lul»x =1} (a>0). (5)

In Section 2 we prove

Theorem 1. Assume that n > 5 and let S be as in (1). Then, for any a > 0 we have:

(i) X (R",a) =S and it is not achieved,
(i) if 2 C R" is a smooth bounded domain, then X (82, a) < S/2*/".

In order to prove Theorem 1(ii), we strongly use the smoothness of 952 and the positivity
of the mean curvature in some boundary point x. For this reason, and because a similar
result holds in the first order case, it is reasonable to conjecture that for the half space R’,
we have

S
b)) (Rfl|r a) = 5a/n and it is not achieved. 6)

However, a proof of (6) seems rather difficult. This difficulty was already emphasized by
van der Vorst [13, Remark, p. 267] where the simpler case of the space H> N HO1 (instead of
H?) is considered. The impossibility of using a reflection argument already present in the
H’N HOl setting, is here further complicated because we cannot make use of the maximum
and the comparison principles.

We can prove a much weaker version of (6); we state this result for “flat” and “non-
smooth” domains. More precisely, we consider the domains

R}, := (0,00 x R"™*  k=1,....n,

and we prove

Theorem 2. Assume thatn > 5. Foranya > 0and any k =1, ...,n we have

s
2V (REs a) = Zam

and the infimum is not achieved. In particular, X’ (R}, a) = S/24n,

Next, for any bounded domain £2 and any 2 < p < 2*, we consider the following num-
bers:
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2,112 2
[D7ull; +allullz

) (.Q,a): )
! ueHX(2)\(0) luell?
D%u|? + a||ul||?
T(2.a)= inf M (7
ueH2(2)\{0} lluell%

Then, we prove

Theorem 3. Assume that §2 is a smooth bounded domain of R" (n = 5), that a > 0 and
that 2 < p < 2*. Then the infima in (7) are achieved. Moreover, there exists a(p) > 0 such
that if a > a(p), then the minimizers of (7) are nonconstant.

In Section 5 we show that, up to a Lagrange multiplier, minimizers u of X,(£2,a)
(respectively Z‘; (82, a)) as defined in (7), satisfy

/(DzuDzv +auv — [ul”2uv) =0 forall ve H*(£2) (®)
2

(respectively for all v € H,,2 (£2)), where D>uD?v denotes the “scalar product” between
Hessian matrices, namely

0%u 9%v
1 8xi 3)6]' axi ax]'

D*uD*v = for allu,veHz(.Q).

i,j=

For all j, let v; = 5’7‘; = cos(v, x;) denote the jth component of v, the normal vector

to the boundary 0£2. Let {ty = (x); k=1,...,n—1; x € 352} denote a system of local

tangential coordinates to d£2 so that {t1,...,#,—1, v} is a complete orthonormal system

diffeomorphic to {xi, ..., x,}. As pointed out by P.L. Lions [10, p. 76], the boundary con-

ditions associated to (8) do not depend on the choice of the system {¢1, ..., #,—1}. Then,
we have

Theorem 4. Assume that 2 is a smooth bounded domain of R" (n > 5), that a > 0 aﬁd
that 2 < p <2*. Assume that u € H2(2) (oru e HVZ(.Q)) satisfies (8). Then, u € CH(£2)
and u is a classical solution of

Au+au=ulP?u inf 9)
satisfying the boundary conditions (if ueH 2(.Q))

Pu A . Aty

57 =27~ —v; ) =0 32! 10

92 Z Z 8x,8x] T <8x,~ ”’) or (10)
or the boundary conditions (ifu € H 2(5’2))

du _dAu “ Mtk

— = 2 —v; | =0 982. 11

PN 2 ; ax,axj oie <8x,~ ”’) on (an

l]_

1 8%u ._ xn Pu_ Bu n
Here, _2 Z:i,jzl x; 0x Vivj and 93 i,j,k=1 9x; ax,axk ViVj Vk-
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In particular, Theorem 4 tells us that minimizers of (7) (if they exist!) are smooth func-
tions. Moreover, since a solution of (9) may be sign-changing, further regularity seems to
be false in general, at least for noninteger values of p.

Remark 1. In some cases the boundary conditions may be significantly simplified.

First, assume that 92 is “somewhere flat,” namely that there exists I" C 92 of pos-
itive (n — 1)-dimensional Hausdorff measure such that I" C {x,, = 0}. Then, the second
boundary condition in (10) becomes

a3u 28Au
ax3 Xy

Second, assume that £2 is the unit ball and that u is radially symmetric, u = u(|x|);
note that we have no condition which ensures u to be radially symmetric! However, in
this case, (10) become u” (1) = u”’(1) — (n — Du’(1) = 0, while (11) become u’(1) =
u”" (1) +m—Du’"(1)=0.

As far as we are aware, biharmonic semilinear elliptic equations as (9) have so far
been tackled only in the spaces Hg(.Q) or H> N Hol(.Q) (where (3) is a norm). In the
first case, Dirichlet boundary conditions (x = g_ﬁ = 0) arise, whereas in the second case
Navier boundary conditions (u = Au = 0) appear. Hence, the present paper is also a first
contribution to biharmonic semilinear problems with boundary conditions (10) and (11).

Note that (8) admits the two constant solutions
uo =0, uy=al/P=2, (12)

It is therefore of some interest to find out whether (8) also admits nonconstant solutions.
As a consequence of Theorems 3 and 4, we obtain

Corollary 1. Assume that $2 is a smooth bounded domain of R" (n > 5) and that
2 < p < 2*. There exists a(p) > 0 such that if a > a(p), then (8) admits a C**(82) non-
constant solution.

Corollary 1 nothing says about small values of a. In the second order subcritical case, it
is known [9] that for sufficiently small a, the corresponding equation only admits constant
solutions. In the critical case, counterexamples in [3] show that a similar result is false
in general; nevertheless, it is proved in [4] that the mountain-pass solution (or minimal
energy solution) is constant for sufficiently small a. These results are obtained by showing
that for small a any solution u satisfies u = u, where u is the mean value of u. In turn, this
is obtained by using Wirtinger’s inequality which enables to estimate ||u — it]|» in terms of
[[Vu|l2. In the fourth order equation, one would need an a priori estimate of |ju — i||> in
terms of || D?ul|,, which does not hold in general. Hence, the following question naturally
arises: is it true that for sufficiently small a, (8) only admits constant solutions or that the
mountain-pass solution is constant? We have no answer to this question but we have some
reasons to believe that it might be negative.

Another question which arises in connection with Corollary 1 is the sign of the solu-
tions of (8). For the corresponding first order minimization problem, it is clear that u is
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a minimizer if and only if |u| is a minimizer; this shows that a minimizer may be chosen
nonnegative (in fact positive by the maximum principle). For the second order minimiza-
tion problems considered in the present paper, this simple trick fails since |#| may not be
in H?(£2). On the other hand, a simple application of the divergence theorem enables us
to prove

Theorem 5. Assume that 2 is a smooth bounded domain of R" (n > 5), that 2 < p < 2*
and that a = 0. Let u > 0 be a solution of (8); then u = 0.

In view of the above discussion, it is clear that Theorem 5 is not satisfactory. One should
also exclude the existence of sign-changing solutions.
2. Proof of Theorem 1
2.1. Proof of (i)

Let B = {u € D*>2; ||lu|l»» = 1}. For any a > 0, we have

_ 5 2< . 2112 . 2112 2
S JEEHD I/t||2 \ueBr%rl'llg(R") b ””2 gl,teBr'IWIITIf;(]R”)(”D ””2+a”””2)

= (R",a), (13)

where the first inequality follows from the (proper) inclusion H2(R") C D>2.
In order to show the converse inequality, we construct a suitable minimizing sequence.
For all ¢ > 0 consider the radial function

Ve(r) :=ue(r) —ug (1)
where u.(|x|) = u.(x) is defined in (2). Let now
ve(r) ifre[0,1/2],
z2e(r)={ we(r) ifrell/2,1], (14)
0 if r € [1, 00)
where w, (r) = a.(r — 1)3 +b.(r — D? and a, b, are chosen in such a way that we(1/2) =
ve(1/2) and w,,(1/2) = v,(1/2). Hence, z, € H2(R") for all £ > 0; note that if n > 8, then
ug € H*(R"™) and instead of {z,} one can directly take {u,}.

A simple computation shows that lim,_,¢a, = lim;_,¢ b, = 0 so that, if we let ¢ — 0,
we obtain

1022 = [ 0% () + o)) = 57 o)
Rn

By

/]zg(|x|)}2* = / |u8(|x|)|2* +o(1) = S"* +0(1),

B2

Rn
/|zg(|x|)|2=o(1). (15)

]R)‘l
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Finally, set Z, := z./||z¢||2+ sothat Z, € BN H2(R”). Therefore, by definition of X' (R", a)
and by (15) we have

2(R",a) < |D*Z: |3 +allZ:} foralle >0,
8113%)(||D228 | +allZe13) = 5. (16)

The first part of statement (i) in Theorem 1 follows at once from (13) and (16). The sec-
ond part is readily obtained by contradiction: if the infimum is achieved, then the minimizer
would violate the Sobolev inequality || D?u ||% > S which holds for all u € B.

2.2. Proof of (ii)

Here, we take into account the effect of the curvature of the boundary 952, following
an idea from [2,14]. Since £2 is smooth and bounded, there exists x € 32 such that in a
neighborhood of x, §2 lies on one side of the tangent hyperplane at x and the mean curva-
ture with respect to the unit outward normal at X is positive. With a change of coordinates,
we may assume that X = 0 (the origin), that the tangent hyperplane coincides with x, =0
and that £2 lies locally in R". = {x = (x/, x,,); x, > 0}. More precisely, there exists R > 0
and a smooth function p :w — R, (where w = {x’ e R"™!; |x’| < R}) such that

(", x) €ERQNBr &  x,>p(),
X', x)€edRNBr & x,=pk).

Furthermore, since the curvature is positive at 0, there exist A; (i = 1,...,n — 1) such that
n—1 n—1
Y x>0 and p()=) rx?+O(IX'P) asx’—0. 17)

i=1 i=1
Let A:={x € Bg; 0 <x, < p(x")}. Fix o > 0 sufficiently small so that
L:=(—0,0)" C Bgs
and define
A= (—0,0)" L.
Let ¢ be a radial C* function such that 0 < ¢ < 1 and
o0={0 1S
and define the function Ug(x) := ¢ (|x|)us(x). For our convenience, we set wu, =
Wp—1 Z:-l;ll riand Cp = [(n —4)(n — 2)n(n + 2)]"~*/8. We claim that, as & — 0:

f! , ‘2 g4 [2V/105 uselogl ifn =5,
D*U,

- - —4)2 (e pnss .
0 2 C;%%(n3+2n2—9n—2)un%s ifn>6
+o(¢e), (18)
LSt Cp, TN (%)
U2 = —_—nPn 2 2 . 19
/ C T w1 Iy fTe® (19)

2
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Postponing the proofs of (18) and (19), we conclude the proof of statement (ii). Note first
that as ¢ — 0 we have

0(% if n > 8§,
/ngz / Ufg / ugz 0(84logé) if n =28, (20)
2 2NBg)2 Brp o™ ifn=5,6,7.

By using (18)—(20), we obtain for all a > 0:

X(82,a)
_ ID?Uel3 +allUel3
U 113
n—>5
s i C221=4/n g1=n/4 (n—4zz(_n;—2”—4) I (r)l’"g)z Ve fo(e) ifn>6,
= 4—/ - .
28/ e 4/%810&,)%4_0(8) ifn=>5.

Clearly, this last term becomes strictly less than §/2%" for sufficiently small & so (ii)
follows.

Proof of (18). We split the integral as

firur-tf | [

Br  £2\Bgx ANL A\L

In view of the estimates in [6, (3.23)], we have

s [Iprup =350 [ DU = o),

/ 02U, = 0(s"*).
A\L
Therefore, (18) will follow if we show that

/ o | 2V105usetog ifn=5,
|D*U|" ~ wtl) p(n=s (22)
2 (=4 3 2 rés)res) .

ARL Cn 831 1)2 (n + Zn — 9l’l — 2)/¢Ln TZ)ZS lfn 2 6

By computing | D?u,|*, we obtain

e dx
/]D2U€| =Cr(n—4)% 4[(n2—5n+8) / @i
ANL

ANL
dx
)24 / _dx
HA A e
ANL

d
ANL
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We now estimate the three integrals in (23). With the change of variables x, =
€2+ |x'|2 - y, and using [y (1 + 2P dt =5 + O(s?) for all b < 0, we obtain

(x)
/ / / dx, dx’
(82+|x|2)” 2 (82+|x/|2 _’_xr2,)n—2
A 0

A

)
VAR
_ / dyy dx’
- (L4372 (€2 + x>
0
po(x)) p3(x')
/ @2’ (/ & + Py ‘dx/)' @9

We are so led to estimate

p(x) ,
/(82+|x |2y 7 4

ZA/ </ LS )
- (82+|x 2 (67 + x|y

-1
_ Xtk s, Iyl
n—1 (I+[y[2)=2
Ale

lyl?

dy+ofefn [ —2
Y ( 1+ [y[2)n2
£

dY> (25)

where we used (17), the change of variables x” = ¢y and the following identity:

2
xi / / |x | ’
dx' = dx’.
/ (82 + |x/|2)”*2 X n—1 (82 + |x/|2)”*2 X
A A

We now distinguish two cases.
Case n > 6. In this case

o0
/ yI? / e / "
2 G2 P ) G P T | aeyr @
Rr— 0
IRACONCY
2 (n—2)

Case n = 5. In this case By C A C Byy C R*. Moreover,

20/¢ 20’/8

ly[? / f
——dy = 7dr\a) — =wylog?2.
f A+ (1 +r2)3 4 408

Bagje\Boye o/e
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Hence, if n =5, as ¢ — 0 we get

o/e

b dy = / b, dy +0(1) = a)4/ dr+0W)
I+ 1y?)? (1 +1y»3 (I+

lyl<o/e
1
=wyslog -+ O(1).
£
Furthermore, the same arguments enable us to show that
0% ifn>7,

ly® N
/ (1+|y|2)" 5 dy = O(logg) ifn =26,
o) ifn=>5.

Recalling the definition of u,, and inserting all the above estimates into (25), we obtain

reEEhres2y o .
/ P | T ifn e, 06
E+ P2 =1 gl itn=5.
Once more, one can use the same arguments as above to show that
o) O™ ifn>8
p- X ; 1 .
f(82+|x '|2yn— ld - O(IOgE) itn="7,
o(l) ifn=>5,6,
which, together with (24) and (26), yields
rEHYP R s,
/ L N e 27
(= +x[5)"= n-1 1 =
AAL log - ifn=>5.

In exactly the same way, we may estimate the other integrals in (23) and obtain (as € — 0):

4/ M F(L?)F(%)Ssﬂ
@+ xH" n-1 2I' (n) ’

ANL
+1 -3
82/ o M r)rs) so,
2+ x> n—1 2(n—-1
ANL

(28)

Taking into account the properties of the gamma function, and inserting (27) and (28) into
(23) gives (22) so that the proof of (18) is complete. O

Proof of (19). We also split f o Uaz* according to (21) and we use the estimates in [6,
(3.25)], so that

%fyg*zés"/uo(g"), f U2 = o(e"). /ug*zo(sn).

Bg 2\Bg A\L
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Therefore, (19) will follow if we show that

[ vz = Gt TS
& 2m—=1 ' (n)

e+ o(e). (29)
ANL

By arguing as for the Hessian norm, we obtain

CZ* ° n

2% ¢ Ly Hn r

/Ug = / e _<n—1)8'/<1+r2>"dr+0(8)
0

ANL ANL

and (29) follows at once. 0O

3. Proof of Theorem 2

Consider first the case k = 1 so that ]R’l’ L= R’ . Consider the functions z, introduced
in (14). By symmetry and (15) we deduce that z, € Hv2 (R%) and

f | D22, (1) =

/yz5(|x|)12=o<1>

n
R+

Sn/4

Sn4 "
+o(1), /|zs(|x|)|2 = =5~ +o(),
R

/
2

as ¢ — 0. Therefore

ID?zell3 +allzel; S
m 2 = 5a/n
e lze l13.

which proves that

S
For contradiction, assume that there exists v € HV2 (R ) such that
ID*vl5 +alvl; _ S
= 24/n

31
lv]l3.

and set

/? .f > 0?
W', xy) = { v(x’, x,) 1 Xn 32)
v(x', —x,) ifx, <O.
Then, w € H>(R") and by doubling the integrals, we obtain
ID*wl3 +allwl

2
llwll5«
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which contradicts Theorem 1(i). Therefore, there exists no v € Hv2 (R%) such that (31)
holds. This means that

2,12 2
[D=vll5 +allvly S
2 ~ 54/n

lvll5s 2

forall v e HZ (R%)

which, together with (30), shows that XV(R" ,a) =
achieved.

The cases k = 2,...,n are similar; one should proceed with k iterated reflections as
(32).

24/,, and that the infimum is not

4. Proof of Theorem 3

We only prove the result for X, (£2, a), the case X' (£2, a) being completely similar. Let
{tm}m>0 C H%*(2)bea minimizing sequence for X, (£2, a) in (7) such that |Ju,,|, = 1.
Then, {u;;},>0 is bounded in H?(£2) and there exists # € H2(£2) such that u,, — & in
H2(0), up to a subsequence. By the compact embedding H 2(§2) Cc LP(£2), we deduce
uy, — uin LP(£2) so that |lu||, = 1. Moreover, by lower semicontinuity of the norm with
respect to weak convergence we infer that

”Dzl't”z"'a”””z Xp (£2,a)

and we conclude.
In order to show that the minimizer for X', (£2, a) is nonconstant for sufficiently large a,
we have to rule out u, see (12). To this end, for every u € H?%(£2) we define

I D2ull3 + allull3
flu):=—""2_—"""2
llul?

so that f(u1) = a|2|'?~2/P_ The proof of Theorem 3 will be complete once we find
a(p) = 0 such that

al2|P2/? > inf fGu) foralla>a(p). 33
ueH2(2)

Without loss of generality, we assume that O € §2; then, we define the function

{(l—a|x|4)2 for |x| < 1/¥a,
0 for [x| > 1/¥a
whose support is contained in £2 provided a is sufficiently large, say a > a. For such a, we

have ¢, € H?(£2) and we may compute f(¢,); by straightforward computations in radial
coordinates one sees that

loallp ="K, and | D} =a' G,

@a(x) =

where

n+48 2(n+20) n+8}

1
2P n—1
- dp and C, =64 :
Kp w”/ prodpane “’"[n+12 nt8 | ntd
0
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Summarizing, for every 2 < p < 2* and every a > a, we have

C,+ K>

s —§+
P
Kp

n
a?z?r

fpa) =

Therefore, if a > @ (to ensure ¢, € H>(£2)) and

< C, + K> )41’/”(172)
N et L e S

34
K;/P|2|(p=2/p G

then f(u1) > f(¢s) so that (33) holds and u; is not a minimizer for (7).

Remark 2. Let p = 2* and suppose that we have proved that the minimum in (7) is
achieved. From Theorem 1(ii), we know that

ue}{r%f(mf(u) =2(2.a) < 24/n"

Hence, (33) would follow if

5_ S

~@repn
On the other hand, if the minimum in (7) is achieved, then the lower bound (34) also holds
for p =2*. Combining these facts, would show that

Ch+ K>

Q2D K22 24n }

a2®) < min{

5. Proof of Theorem 4

If u € H?(£2) (respectively u € H2(£2)) is a minimizer of (7), then there exists a La-
grange multiplier A € R\ {0} such that u is a critical point of F (u) := ||D2u||% +a ||u||% +
A(llullhy — 1), namely

F'(u)[v] = /(2D2uD2v +2auv + Aplul?2uv) =0 forall ve H*(2)
2
(respectively v € H (£2)).

Then, i := (pxr/2)"/P=2y satisfies (8).
Next, let us recall the following integration by parts formula:

/DzuD2v=/A2uv—/ Au Z / u Vj,
0x;0x; 8x,

Q 2 382
Yu € H*(2), Yv e H*(2), (35)
where v; = 86—] = cos(v, x;) denotes the jth component of the normal v. In order to high-
light the boundary conditions, we first transform the last boundary integral according to
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[10, pp. 75-76]; we introduce a system of local tangential coordinates to 92, namely

ty =tx(x1,...,x,) (k=1,...,n — 1) so that (¢, ...,#,—1, v) is a complete orthonormal
system diffeomorphic to (x1, ..., x,). Then, we write
n 2 n n—1 2 n 2
0“u  dv 0°u 8v8tk 0“u  Jdv
Z xidx; i =2 Zax,ax, PERIADY dxiox; gv
i,j= i,j=1k=1 i,j=1

and integrations by parts with respect to tangential coordinates yield

n 2 n 2
0“u  Jdv Ity 0“u 0ty
Z Z / 3x,’8x]' oty 9x; Y= Z Z / oty (8)613)6] 0Xx; U]>U

i,j=1k=14 i,j=1k=14

so that (35) becomes

=y A I
/D2uDzv:/A2uv— u /— u —kvj v
oty 8xiax]' 0x;
22 2

EY?) iLj=lk=1450

3%u 9
+/—”—”, (36)

av2 Jv

982
which is precisely (5.19) in [10] with @ = 1 and b = 0. By computing the derivative of the
product, we obtain

- 3%u
Z Z —Vj v
atk 8xiax]' 0x;

i,j=1k=1 50
n n n—1
0“u )8tk 0ty
3> / KEDIPD / o (5w )
iy Btk<8x18x] 0x iy 0x;0x; 1 \ 0x;

(37

Next, we remark that
1

33 a [ 92 — 9 [ 9? a9 [ 92
z—u:—( - ):Z—( - )—k+—< " >v,~ for all i, j
8xi axj ox; axiax]' =1 ot axiax]' 0x; ov axiax]'

and therefore

Xn:z ( >8tk])-— Xn:[ 831,[ 8 < 8214 )])-i|])-

P A 2 T a, oy, )Y

e <9 \9x;0x; ) 9x 2 dx;ox; 0V \9x;0x;
_ dAu  du 38)
T v gv3’

Plugging (38) into (37) gives
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n

9%u oty
Z Z l)j v
Btk 0x;0x; dx;

i,j=lk=1 50
dAu  u | ¢ ty
(e )
8x,8xl 8tk 0x;
082

Finally, inserting this into (36) yields

FE IA nonl 2 9 o
[ prunto= [ aws [(Gh-250 - 30 3 () o
3 v L dx;dx; dty \ dx;
o o 90 i,j=1k=1
8%u v
iy 39
+/8v28v (39

a2

According to formula (39), ifu € H 4(82) we may rewrite (8) as

du - 0l
A2 — |y|P—2 / — T ox; )
f( u+au — |ulP"u)v + (81)3 Z Z 8x,8x1 otk <8x,~ v]) ’

2 82

9%u v
+/ma—v=0 40)
082

for all v e H(£2) (respectively v € HUZ(.Q)). By taking v € C2°(£2) in (40), we see that
A’u+au—|ulP?u=0 ae.in$2. (41)
Consider first the case of test functions in H>(£2). For any ¢ € C*®(9£2) let v € C*(2)
be the unique solution of
A’v=0 in$2,
=g onde,
v=0 on ds2.
Then, plugging v into (40) and recalling (41) entails
0%u o
S¢= 0 forall ¢ € C*(9£2);
av
082
this clearly implies that

3%u
Inserting (41) and (42) into (40) immediately yields
33u - aty
= _ —v; =0 onds2. 43
PRE Z Z Bx,ax] T <8xi ”’) " “3)

=1k=1
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We now consider the case of test functions in HUZ(.Q). Since also u € Hvz(.Q), we have

a_u =0 onds2, (44)
av
so that the last term in (40) vanishes. Hence, by (41), we obtain again (43).
We now need to justify the original assumption u € H*(£2) made in order to obtain
(35) and (41). The first step consists in verifying that the boundary conditions satisfy the

complementing condition:

Lemma 1. The boundary conditions (42)—(43) (respectively (44)—(43)) satisfy the comple-
menting condition.

Proof. We follow the notations of [5, pp. 625-633]. Alternatively, one may also refer to
[11, Definition 8.28] for an equivalent formulation of the complementing condition.
Firstly, we have L'(§) = |& | for all £ € R". Therefore, if v denotes the outward normal
to 382 and & any vector parallel to 352, the polynomial T — L'(£ + tv) admits T =i|£| as
double root with positive imaginary part. Hence,
a2
M*(E, 1) = (r —ilgl)".
Next, we notice that for the boundary conditions (42)-(43) we have respectively
B| (& +tv) =12 and By (£ + tv) = 2|§|*t + 7. Therefore,
Bi(§ +tv)=§|(2it + &) mod [MT (&, D)),
By(€ +tv) = [§*(—7 +2il§) mod [MT (&, D)];
since 7 > |£|(2iT + |£]) and T — |&|>(—7 + 2i|&|) are linearly independent (as poly-
nomials of the variable ), the boundary conditions (42)—(43) satisfy the complementing
condition.
For the boundary conditions (44)—(43) only B{ changes and becomes B{ (¢ + tv) =t.
Therefore,
Bi(§+tv)=1 mod[MT(E, 1]
By( +1v) = |E*(—7 +2i§]) mod [MT(E, D)];
since T > 7 and T > |£|?(—1 + 2i|£|) are linearly independent, also the boundary condi-
tions (44)—(43) satisfy the complementing condition. O

Arguing as in [13], we may now prove:

Lemma 2. Assume that u € H*(£2) (respectively u € Hvz(.Q)) satisfies (8). Then,
uelLi(82) forall1 <q < oo.

Proof. Since the proofs are similar, we prove the lemma only in the case where u €
H?(£2). Note first that by Lax—Milgram theorem, for any w € L¥"/ "9 (£2) there exists
aunique u € H 2(.Q) such that

/(DzuDzv —|—auv) = / wv forallve H2(.Q).

2 2
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This defines a Green function G : L2/ +9(2) — H2(£2) such that G(w) = u where u
is the unique solution of the above variational problem; by what we have proved above,
u formally satisfies (42)—(43).

Next, let a(x) := |u(x)|P~2 (recall 2 < p < 2*). Then, by assumption, o € L"/*(£2)
and u satisfies

A’u+au=a(x)u inD (), (45)

see (35) and (41). By [13, Lemma B2], for any ¢ > 0 there exist g, € L”/4(.Q) and f; €
L*°(£2) such that ||g.|l,/4 < € and (45) reads A%u+au = go(x)u+ f.(x) or, equivalently,

u—Gew) =he, (46)

where h, = G(f:), G:(u) = G(g.u) and G denotes the above defined Green function for
the operator (A% + a) with the boundary conditions (42)—(43). Fix any ¢ € [1, 00); using
the Hardy—Littlewood—Sobolev inequality and repeating the arguments of Step 2, p. 272
in [13], one obtains that G, :L9(§£2) — L9(£2) and that if ¢ is sufficiently small, then
IGellLa—ra < % Finally, Step 3, p. 273 in [13] may be repeated with no modifications.
This proves the lemma. 0O

Proof of Theorem 4. We use Schauder estimates and we argue as in the proof of
[13, Lemma B3]. More precisely, Lemmas 1 and 2 imply that u € W*?(£2) for all
1 < p < oo; embedding theorems and smoothness of 952 then show that u € C3 ().
Hence, |u|?~2u € C%%(§2) so that Schauder theory finally yields u € C*(£2). Therefore,
u is a classical solution of (9) which satisfies the boundary conditions (42)—(43) or (44)—
(43). This completes the proof. O

6. Proof of Theorem 5

Let a =0 and let u > 0 be a solution of (8). By taking v =1 in (8), we infer

/upfl =0

2
which implies at once that u = 0.
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