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Abstract. In a fish-bone model for suspension bridges previously studied by
us in [3] we introduce linear aerodynamic forces. We numerically analyze the

role of these forces and we theoretically show that they do not influence the

onset of torsional oscillations. This suggests a new explanation for the ori-
gin of instability in suspension bridges: it is a combined interaction between

structural nonlinearity and aerodynamics and it follows a precise pattern.

1. Introduction. Since the Federal Report [1], it is known that the crucial event
causing the collapse of the Tacoma Narrows Bridge was a sudden change from a
vertical to a torsional mode of oscillation. Several studies were done on this topic,
see [8, 11, 14] but a full explanation of the origin of torsional oscillations is nowa-
days still missing; see also the updated monograph [15] and references therein. In
two recent papers the onset of torsional oscillations was attributed to a structural
instability. In [2] a model of suspension bridge composed by several coupled (second
order) nonlinear oscillators has been proposed. By using suitable Poincaré maps,
it has been proved that when enough energy is present within the structure a res-
onance may occur, leading to an energy transfer between oscillators, from vertical
to torsional. The results in [2] are purely numerical. We found a similar answer in
[3] by analyzing a different mathematical model, named fish-bone. In this model,
the main span of the bridge, which has a rectangular shape with two long edges
and two shorter edges, is seen as a degenerate plate fixed and hinged between the
towers. The midline of the roadway is seen as a beam with cross sections that
are seen as rods free to rotate around their barycenters located on the beam. The
degrees of freedom are the vertical displacement of the beam y, which is positive
in the downwards direction, and the angle θ of rotation of the cross sections with
respect to the horizontal position. The roadway is assumed to have length L and
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width 2` with 2` � L. By considering the kinetic energy of a rotating object and
the bending energy of a beam, the following system is obtained in [3]:{

Mytt+EIyxxxx+f(y+` sin θ)+f(y−` sin θ)=0 0 < x < L, t > 0,
M`
3 θtt−µ`θxx+cos θ(f(y+` sin θ)−f(y−` sin θ))=0 0 < x < L, t > 0,

(1)

where M is the mass of the rod, µ > 0 is a constant depending on the shear modulus
and the moment of inertia of the pure torsion, EI > 0 is the flexural rigidity of the
beam, f includes the restoring action of the prestressed hangers and the action of
gravity. To (1) we associate the boundary-initial conditions

y(0, t)=yxx(0, t)=y(L, t)=yxx(L, t)=θ(0, t)=θ(L, t)=0 t ≥ 0, (2)

y(x, 0)=η0(x), yt(x, 0)=η1(x), θ(x, 0)=θ0(x), θt(x, 0)=θ1(x) 0 < x < L. (3)

For a linear force f the two equations in (1) decouple: this case was studied in
[10]. In the nonlinear case, well-posedness of the problem was shown in [6]. For a
suitable nonlinear f , in [3] we gave a detailed explanation of how internal resonances
occur in (1), yielding instability. The aim of this analysis was purely qualitative and
the bridge was seen as an isolated system with no dissipation and no interactions
with the surrounding air. In particular, both theoretical and numerical results were
given proving that the onset of large torsional oscillations is due to a resonance which
generates an energy transfer between different oscillation modes. More precisely,
when the bridge is oscillating vertically with sufficiently large amplitude, part of
the energy is suddenly transferred to a torsional mode giving rise to wide torsional
oscillations. Estimates of the energy threshold for stability were obtained both
theoretically and numerically, see Section 2.

Our purpose in [3] was to emphasize the structural behavior of the bridge without
inserting any interaction with the surrounding air. This procedure was also followed
by Irvine [7, p.176] who comments his own approach by writing:

In this formulation any damping of structural and aerodynamic origin has been
ignored... We could include aerodynamic damping which is perhaps the most im-
portant of the omitted terms. However, this refinement, although frequently of
significance, yields a messy flutter determinant that requires a numerical solution.

This comment says two things. First, that it was a good starting point to study (1)
as an isolated system. Second, that, in order to have more accurate responses, the
subsequent step should be to insert aerodynamic forces in the model. This refine-
ment of the model (1) was also suggested to us by Paolo Mantegazza, a distinguished
aerospace engineer at the Politecnico of Milan, and motivates the present paper. In
order to better highlight the role of the aerodynamic forces, we do not insert in the
model any other external action. We will show, both numerically and theoretically,
that the threshold of instability of the system is independent of aerodynamic forces.
This suggests a new pattern for the aerodynamic and structural mechanisms which
give rise to oscillations in suspension bridges, see Section 6.

2. One mode approximation of the fish-bone model. We first introduce some
simplifications of the model which, however, maintain its original essence and its
main structural features. First, up to scaling we may assume that L = π and M = 1.
Then, since we are willing to describe how small torsional oscillations may suddenly
become larger ones, we use the following approximations: cos θ ∼= 1 and sin θ ∼= θ;
see [3] for a rigorous justification of this choice. Since our purpose is merely to

describe the qualitative phenomenon, we may take EI
(
π
L

)4
= 3µ

(
π
L

)2
= 1 although

these parameters may be fairly different in actual bridges. For the same reason, the
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choice of the nonlinearity is not of fundamental importance; it is shown in [2] that
several different nonlinearities yield the same qualitative behavior for the solutions.
Whence, as suggested by Plaut-Davis [12, Section 3.5], we take f(s) = s + s3.
Finally, we set z := `θ and the system (1) becomes{

ytt + yxxxx + 2y(1 + y2 + 3z2) = 0 0 < x < π, t > 0,
ztt − zxx + 6z(1 + 3y2 + z2) = 0 0 < x < π, t > 0 .

(4)

To (4) we associate some initial conditions which determine the conserved energy
E of the system, that is,

E =
‖yt(t)‖22

2
+
‖zt(t)‖22

6
+
‖yxx(t)‖22

2
+
‖zx(t)‖22

6

+

∫ π

0

(
y(x, t)2 + z(x, t)2 + 3z(x, t)2y(x, t)2 +

y(x, t)4

2
+
z(x, t)4

2

)
dx .

Existence and uniqueness of solutions were proved in [6] by performing a suitable
Galerkin procedure, see also [3] where more regularity was obtained. The proof is
constructive: to (4) we associate the functions

ym(x, t) =

m∑
j=1

yj(t) sin(jx) , zm(x, t) =

m∑
j=1

zj(t) sin(jx) (5)

and the approximated m-mode system{
ÿj(t) + j4yj(t) + 4

π

∫ π
0
ym(x, t)(1+ym(x, t)2+3zm(x, t)2) sin(jx) dx = 0

z̈j(t) + j2zj(t) + 12
π

∫ π
0
zm(x, t)(1+3ym(x, t)2+zm(x, t)2) sin(jx) dx = 0

(6)

where j = 1, ...,m. Then, suitable a priori estimates allow to prove that

ym → y in C0([0, T ];H2 ∩H1
0 (0, π)) ∩ C1([0, T ];L2(0, π)) as m→ +∞ ,

zm → z in C0([0, T ];H1
0 (0, π)) ∩ C1([0, T ];L2(0, π)) as m→ +∞

for all T > 0. Hence, the functions in (5) approximate the solutions of (4). The error
committed when replacing y with ym and z with zm can be rigorously estimated,
see [3, Theorem 2].

In what follows we focus our attention to the simplest case m = 1. Then, system
(6) reads {

ÿ1 + 3y1 + 3
2y

3
1 + 9

2y1z
2
1 = 0

z̈1 + 7z1 + 9
2z

3
1 + 27

2 z1y
2
1 = 0 ,

(7)

with some initial conditions

y1(0) = η0 , ẏ1(0) = η1 , z1(0) = ζ0 , ż1(0) = ζ1 . (8)

If we take ζ0 = ζ1 = 0, then the unique solution of (7)-(8) is (y1, z1) = (ȳ, 0) with
ȳ = ȳ(η0, η1) being the unique (periodic) solution of

ÿ + 3y +
3

2
y3 = 0 , y(0) = η0 , ẏ(0) = η1 . (9)

We call ȳ the first vertical mode with associated energy

E(η0, η1) =
˙̄y2

2
+

3

2
ȳ2 +

3

8
ȳ4 ≡ η21

2
+

3

2
η20 +

3

8
η40 . (10)
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Since we are interested in the stability of the solution z1 ≡ 0 corresponding to
ζ0 = ζ1 = 0, we linearize system (7) around (ȳ, 0). The torsional component of the
linearized system is the following Hill equation [5]:

ξ̈ + a(t)ξ = 0 with a(t) = 7 +
27

2
y(t)2 . (11)

We say that the first vertical mode ȳ at energy E(η0, η1) is torsionally stable if
the trivial solution of (11) is stable. By exploiting a stability criterion by Zhukovskii
[16], in [3] we obtained the following theoretical estimates.

Proposition 1. The first vertical mode y at energy E(η0, η1) (that is, the solution
of (9)) is torsionally stable provided that

‖y‖∞ ≤
√

10

21
≈ 0.69

or, equivalently, provided that

E ≤ 235

294
≈ 0.799 .

Proposition 1 gives a sufficient condition for the torsional stability. The numerical
results obtained in [3] show that the threshold of instability could be larger. We
quote a couple of them in Figure 1. We plot the solution of (7) with initial conditions

y1(0) = ‖y1‖∞ = 104z1(0) , ẏ1(0) = ż1(0) = 0 (12)

for different values of ‖y1‖∞. The green plot is y1 and the black plot is z1. For

Figure 1. For t ∈ [0, 200] (left to right, top to bottom): the solutions

y1 (green) and z1 (black) of (7)-(12) for ‖y1‖∞ = 1.45, 1.47, 1.5, 1.7.

‖y1‖∞ = 1.45 no wide torsion appears, which means that the solution (y1, 0) is
torsionally stable. For ‖y1‖∞ = 1.47 we see a sudden increase of the torsional oscil-
lation around t ≈ 50. Therefore, the stability threshold for the vertical amplitude of
oscillation lies in the interval [1.45, 1.47]. Finer experiments show that the threshold
is ‖y1‖∞ ≈ 1.46, corresponding to a critical energy of about E ≈ 4.9. For increasing
‖y1‖∞ the phenomenon is anticipated in time and amplified in magnitude.
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3. How to introduce the aerodynamic forces into the model? Even in ab-
sence of wind, an aerodynamic force is exerted on the bridge by the surrounding
air in which the structure is immersed, and is due to the relative motion between
the bridge and the air. Pugsley [13, § 12.7] assumes that the aerodynamic forces
depend linearly on the “cross” derivatives and functions. Similarly, Scanlan-Tomko
[14] obtain the following equations satisfied by the torsional angle θ:

I [θ̈(t) + 2ζθωθ θ̇(t) + ω2
θθ(t)] = Aθ̇(t) +Bθ(t) , (13)

where I, ζθ, ωθ are, respectively, associated inertia, damping ratio, and natural
frequency. The r.h.s. of (13) represent the aerodynamic force which is postulated

to depend linearly on both θ̇ and θ with A,B > 0 depending on the structural
parameters of the bridge. Let us mention that the arguments used in [14] to reach
the l.h.s. of (13) have been the object of severe criticisms (see [9]), due to some
rough approximations and questionable arguments. Nevertheless, the r.h.s. of (13)
is nowadays recognized as a satisfactory description of aerodynamic forces.

Following these suggestions, we insert the aerodynamic forces in the 1-mode
system (7). We first consider the case where only the cross-derivatives are involved.
This leads to the following modified system:{

ÿ1 + 3y1 + 3
2y

3
1 + 9

2y1z
2
1 + δż1 = 0

z̈1 + 7z1 + 9
2z

3
1 + 27

2 z1y
2
1 + δẏ1 = 0

(14)

with δ > 0. As in (12), we take the initial conditions

y1(0) = σ = 104z1(0) , ẏ1(0) = ż1(0) = 0 (15)

for different values of σ and we wish to highlight the differences, if any, between
(7) and (14). For (14) we have no energy conservation; however, let us consider the
(variable) energy function

E(t) =
ẏ21
2

+
ż21
6

+
3

2
y21 +

7

6
z21 +

9

4
y21z

2
1 +

3

8
(y41 + z41) . (16)

Let us now consider the case where also the cross-terms of order 0 are involved.
Then, instead of (14) we obtain the system{

ÿ1 + 3y1 + 3
2y

3
1 + 9

2y1z
2
1 + δ(ż1 + z1) = 0

z̈1 + 7z1 + 9
2z

3
1 + 27

2 z1y
2
1 + 3δ(ẏ1 + y1) = 0

(17)

where the coefficient 3 in the second equation comes from the variation of the energy

E(t) =
ẏ21
2

+
ż21
6

+
3

2
y21 +

7

6
z21 +

9

4
y21z

2
1 +

3

8
(y41 + z41) + δy1z1 . (18)

Also for (17) we do not have energy conservation but the function E in (18) better
approximates the internal energy. It may be questionable whether to include the
last term δy1z1 into E since this term depends on the aerodynamic forces. However,
the behavior of E, which we analyze in the next section, does not depend on the
presence of this term.

4. Numerical results. For (14) we first take σ = 1.47 and we modify the aerody-
namic parameter δ. To motivate this choice we note that no energy transfer seems
to occur for σ below this threshold, furthermore σ = 1.47 is also the numerical
threshold found when no aereodynamic force is inserted in the model, see Section
2. In Figures 2 and 3 we plot both the behavior of the solutions (first line) and the
behavior of the energy E(t) (second line), for increasing values of δ.
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Figure 2. For t ∈ [0, 200]: the solutions y1 (green) and z1 (black) of

(14)-(15) for σ = 1.47 and δ = 0.01, 0.02 (left to right, first line). Second

line (red): the energy E = E(t) defined in (16).

Figure 3. For t ∈ [0, 200]: the solutions y1 (green) and z1 (black) of

(14)-(15) for σ = 1.47 and δ = 0.03, 0.05 (left to right, first line). Second

line (red): the energy E = E(t) defined in (16).

The first lines in Figures 2 and 3 should be compared with the second picture
in Figure 1 (case δ = 0). We note that, as the aerodynamic parameter increases,
the transfer of energy is anticipated but it is not amplified. Quite surprisingly, on
the second line we see that the energy E(t) remains almost constant except in the
interval of time where the transfer of energy occurs: for increasing aerodynamic
parameters δ we observe increasing variations in the energy behavior.

Then we maintain fixed δ = 0.01 and we increase the initial energy, that is, the
initial amplitude of oscillation. In Figures 4 and 5 we plot both the behavior of the
solutions (first line) and the behavior of the energy E(t) (second line), for increasing
values of σ.

It turns out that all the phenomena are anticipated (in time) and amplified (in
width) and reach a quite chaotic behavior for σ = 3 where we had to stop the
numerical integration at t = 90.
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Figure 4. For t ∈ [0, 170]: the solutions y1 (green) and z1 (black) of

(14)-(15) for δ = 0.01 and σ = 1.5, 1.6 (left to right, first line). Second

line (red): the energy E = E(t) defined in (16).

Figure 5. For t ∈ [0, 170]: the solutions y1 (green) and z1 (black) of

(14)-(15) for δ = 0.01 and σ = 1.8, 3 (left to right, first line). Second

line (red): the energy E = E(t) defined in (16).

For (17) we take again as initial conditions (15) but with σ ≥ 1.47 so that we are
above the energy threshold of instability, see Section 2. In Figure 6 we plot both
the behavior of the solution (first line) and the behavior of the energy E(t) (second
line) of (17)-(15).

It is quite visible that the instability is further anticipated but now also the
amplitude is enlarged. Moreover, the energy increases also in absence of torsional
instability: this variation is due to the cross-derivatives since all the other terms
appear in the energy (18). The very same behavior is obtained for the internal
energy, namely the energy (18) without the last term δy1z1. We also remark that
the energy E fails to follow a regular pattern only in presence of instability. We
only quote these numerical results because all the other experiments gave completely
similar responses.
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Figure 6. For t ∈ [0, 200]: the solutions y1 (green) and z1 (black) of

(17)-(15) for δ = 0.01 and σ = 1.47, 1.5 (left to right, first line). Second

line (red): the energy E = E(t) defined in (18).

5. Theoretical results. As pointed out by Irvine [7, p.176], the numerical ap-
proach is probably the most appropriate to analyze a model which also involves
aerodynamic forces. The reason is that a satisfactory stability theory for systems
such as (14) and (17) is not available. Nevertheless, some theoretical conclusions
can be drawn also for these systems, in the spirit of the results obtained in [3] (see
also Section 2), where the main idea is to study the solutions of the systems near the
pure vertical mode ȳ. Here “pure” means that no interactions with the surrounding
are admitted and only the structural behavior of the bridge is considered. Let us
explain how some of the results for the isolated system (7) may be extended to (14);
one can then proceed similarly for (17).

For system (7), two steps are necessary to define the torsional stability of the
unique (periodic) solution ȳ of (9) (the pure mode):

(i) we linearize the torsional equation of the system (7) around (ȳ, 0), see (11);
(ii) we say that the pure vertical mode ȳ at energy E(η0, η1) is torsionally stable

if the trivial solution of (11) is stable.
We point out that the system (7) is isolated and that (11) is unforced. In this

situation, the above steps (i)-(ii) are equivalent to:
(I) in the torsional equation of the system (7) we drop all the z1-terms of order

greater than or equal to one and we replace y1 with ȳ;
(II) we say that the pure vertical mode ȳ at energy E(η0, η1) is torsionally stable

if all the solutions of (11) are globally bounded.
If we replace (7) with the system (14), then (i)-(ii) make no sense while (I)-(II)

do. A linearization as in (i) would exclude the aerodynamic forces, while acting as
in (I) preserves them and gives rise to the forced Hill equation

ξ̈ + a(t)ξ = f(t) with a(t) = 7 +
27

2
y(t)2 and f(t) = −δ ˙̄y(t) , (19)

where ȳ is the unique periodic solution of (9). Needless to say, f and a have the
same period. The definition (ii) is inapplicable to (19) since ξ ≡ 0 is not a solution,
while (II) is a verifiable property for (19). This is the definition of stability that
we adopt for the vertical mode ȳ in presence of aerodynamic forces. With this
definition we can prove the following statement.
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Proposition 2. Let y be the pure vertical mode at energy E(η0, η1), that is, the
solution of (9). Then ȳ is torsionally stable for (7) if and only if it is torsionally
stable for (14).

Proof. Assume that ȳ is torsionally stable for (7), then the trivial solution of (11) is
stable (condition (i)) or, equivalently, all the solutions of (11) are globally bounded
(condition (II)). Let T be the period of a(t), from the classical Floquet theory any
(stable) solution of (11) may be written as

ξh(t) = Aξ1(t) +Bξ2(t) = Aeiβ1tϕ1(t) +Beiβ2tϕ2(t) , (20)

where A,B ∈ R, β1 6= β2 are real numbers such that eiβjT 6= ±1 (j = 1, 2) and
ϕ1 and ϕ2 are T -periodic functions. By the variation of constants formula we then
find that any solution of (19) takes the form

ξ(t) = ξh(t)− 1

c2

[
eiβ1tϕ1(t)

∫ t

0

eiβ2sϕ2(s)f(s) ds− eiβ2tϕ2(t)

∫ t

0

eiβ1sϕ1(s)f(s) ds
]

where c2 is the (constant) Wronskian of ξ1 and ξ2, namely c2 = ξ1(t)ξ′2(t)−ξ2(t)ξ′1(t).

From [3, Formula (53)] we know that | ˙̄y(t)| ≤
√

2E for every t > 0, hence |f(t)| ≤
δ
√

2E for every t > 0. This proves the boundedness of the general solution ξ and,
in turn, the torsional stability of ȳ for (14).

Assume now that ȳ is torsionally stable for (14). Then ξ is bounded for any
choice of ξh, that is, any choice of the constants A and B in (20). This shows that
also ξh is bounded and proves the stability of ȳ for (7).

This statement deserves a couple of straightforward comments.
• In agreement with the numerical results described in Section 4, Proposition

2 shows that the energy threshold for stability does not depend on the strength
of the aerodynamic forces; in particular, an isolated system has the same energy
threshold.
• By applying Propositions 1 and 2 we infer that the energy threshold for the

stability of (14) is at least 235
294 .

6. Conclusions. It is clear that in absence of wind or external sources a bridge
remains still. A vertical load, such as a vehicle, bends the bridge and creates a
bending energy. Less obvious is the way the wind inserts energy into the bridge:
let us outline how this happens. When a fluid hits a bluff body its flow is modified
and goes around the body. Behind the body, or a “hidden part” of the body, the
flow creates vortices which are, in general, asymmetric. This asymmetry generates
a forcing lift which starts the vertical oscillations of the body. Up to some minor
details, this explanation is shared by the whole community and it has been studied
with great precision in wind tunnel tests, see e.g. [8, 15].

The vortices induced by the wind increase the internal energy of the structure by
generating wide vertical oscillations. When the amount of energy reaches a critical
threshold our results in [3] show that a structural instability appears: this is the
onset of torsional oscillations. The results in the present paper show that, at this
stage, the aerodynamic forces excite the internal energy irregularly giving rise to
further self-excited oscillations.

The whole energy-oscillation mechanism is here described through a very simpli-
fied model which certainly needs to be significantly improved. But, at least qual-
itatively, we believe that the “true” mechanism in a suspension bridge will follow
this pattern:
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1) the interaction of the wind with the structure creates vortices;
2) vortices create a lift which starts vertical oscillations of the bridge;
3) when vertical oscillations are sufficiently large, torsional oscillations may appear;
4) the onset of torsional instability is of structural nature;
5) the aerodynamic forces excite the energy only when the structural torsional
instability appears;
6) the energy threshold of stability is independent of the strength of aerodynamic
forces.
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