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Abstract

We consider the stationary Navier-Stokes equations with a pressure-dependent viscosity. For
”almost conservative” external forces, we prove by application of the local inversion theorem that
the homogeneous Dirichlet problem admits a unique regular solution.

1 Introduction

In this paper we study the stationary problem

~V - [n(p)(Vu+ V)] +Vp+ (u-Vu= f in Q
V-u=0 in Q (1)
u=~0 on Jf2

where the unknowns are the vector function v and the scalar function p and € is an open bounded
set of IR"™ (n > 2) with smooth boundary 9. This problem represents Navier-Stokes equations with
a pressure-dependent viscosity: u is the velocity of the fluid, p its pressure, 7 its viscosity and f an
external force acting on the fluid. Our research is motivated by physical experiments, indeed the
viscosity i of real fluids may depend on the pressure and on the temperature: this dependence is best

represented by Eyring’s equation [1, 5]

(2)

where T denotes the temperature of the fluid and a, b, ¢ > 0 are constants depending on the nature of

b
np, 1) =a T~eXp< J;Cp>

the fluid; we deal with a fluid at constant temperature so that the viscosity 7 only depends on p, i.e.

n = n(p). We require the function 7 to satisfy the realistic assumptions

n€CT(R)  and  inf y(z) =m0 >0, (3)



where m € IN will be chosen depending on the regularity we expect for the solution of (1). To remove
an indeterminacy already present in the classical Navier-Stokes equations we also need a condition on

p: more precisely, we will assume that the mean value of p over 2 is known.

Navier-Stokes equations with a pressure-dependent viscosity were first studied by Renardy [6] in the
3D case; Renardy remarks that if (2) does not break down for large pressures we cannot even guarantee
the existence of a pressure p for a prescribed velocity field « and body force f: under the assumptions
that 7 is sublinear at infinity, that |n'|oc = 7., < 400 an existence and uniqueness result for the
evolution equation is proved. Moreover, Renardy remarks that the stationary equations (1) may lose
their ellipticity unless a condition on the eigenvalues of the tensor (Vu + V7u) is assumed; more
precisely, it is necessary to assume that

the eigenvalues of (Vu+ V7u) are strictly less than 77# . (4)

oo

In the stationary case, the main result of Renardy is an existence and uniqueness result for p (with
given mean value) to satisfy (1) in a suitable weak sense if the velocity u is known and (3) (4) hold.
This result is useful in view of the elimination of the pressure p in the equation: indeed to eliminate
the pressure in (1) we cannot make use of Hodge projection (see [7]) as for the classical problem and
we must solve a nonlinear elliptic equation in divergence form.
In a subsequent paper [2] a similar result is proved (in the case n = 3) by taking stronger assumptions

on 7, by weakening the regularity assumptions on w and f and by replacing (4) with
1 .
2o V/6

the existence of a unique function p (with given mean value) satisfying (1) in a suitable weak sense is

|Vtr|oo <

then proved. In [2] a converse result is also proved: if the pressure p is known and belongs to a suitable
neighborhood of its mean value then there exists a unique u satisfying (1) in a “complementary” weak
sense; the proofs of these results involve Helmholtz-Weyl decomposition of the space L2(£2).

The aim of this paper is to prove, by application of the local inversion theorem, the existence of a
unique regular solution to (1) when the external force f is “almost conservative” in a suitable sense:
this result will be used in a forthcoming paper [3] to prove local existence and uniqueness for the

evolution problem under the only assumption (3) on the viscosity.

2 Statements of the results
We assume that 0 C IR™ is an open bounded set satisfying
o0 € o2 (5)

for some integer m. With bold capital letters (L2, H', V,...) we denote functional spaces of vector

functions and with usual capital letters (L%, H',...) we denote functional spaces of scalar functions.



To simplify notations we set L? := L?(), H' := HY(Q),... With W™* we represent Sobolev spaces
of functions with generalized derivatives up to order m in L*®, with || - ||, we denote the corresponding
norm and with W™ the W —closure of the space C° of smooth functions with compact support
in Q; H™ := W™?2 represent the Hilbertian Sobolev spaces. Given Banach spaces X, Y, we denote by

L(X,Y) the space of linear continuous operators from X to Y and by [ - [|z(x,y) its norm.

We also need the spaces arising from Helmholtz-Weyl decomposition of the Hilbert space L? (see [8])
G:={fel® V-f=0, y.f =0} Gl:={fel? Jgec H', f=Vg}
Vi={feH V- f=0}
where 7, denotes the normal trace operator; the space V is a Hilbert space when endowed with the
scalar product (u,v)y = (Vu, Vu)r2. It is well-known that L? = G @ G': we denote by P (resp.
Q) the orthogonal projectors of L? onto G (resp. G=). The projections Pf and Qf of a function
f € L? are determined by solving the homogeneous Dirichlet problem for a Poisson equation and a

Neumann problem for Laplace equation. Recall that P is a linear continuous operator from W"*

onto {f € W™*: V. f=0, v,f =0}

As in [6] we assume that the mean value of p over Q is given, say p: without loss of generality we take
p = 0; assume that

meIN and s>1 satisfy (m+1)s>n (6)

in order to have the imbedding W™+1:5 ¢ L. Consider the spaces
W = {g € Wwmths, / g(x) de = O}
Q

and Uy, s := W™25 NV normed with the W™ +25norm; the space Xy, 5 := Ups X W e s a

Banach space when endowed with the norm

V(w,p) € Xms  (wp)llx = [[ellmizs + [IPlmiss -

The space X, s is the space where we will seek the solutions (u,p) of (1); to simplify the notations
we omit the indices m and s on the spaces X, U. Set also Y := W™* || - ||y = || - ||m- Finally, let us

introduce the operator ® : X — Y (see Lemma 3) defined by

O(u,p) = =V - [n(p)(Vu+ V)] + Vp+ (u- V)u . (7)

Definition

Let f €Y, we say that (u,p) is a solution of (1) if ®(u,p) € Y and ®(u,p) = f a.e. in 2.

Making use of an inversion argument we will prove



Theorem 1 Assume (3) (5) (6) and let ¢ € WY then there exists a constant R = R(1) > 0 such
that if f € Y satisfies || f — V|ly < R, then (1) admits a unique solution (u,p) € X in a suitable X-
neighborhood of (0,1). Moreover, the map f — (u,p) is continuous from'Y to X. In particular, there
exists R > 0 such that if | f|ly < R, then (1) admits a unique solution in a suitable X-neighborhood

of (0,0).
In particular, we have

Corollary 1 Assume (3) (5) (6) and let f € Y be such that Pf =0 (i.e. f € G*); then (1) admits
a unique solution (u,p) € X given by
u=0 p=g

where g is the zero mean value potential of f (i.e. g € Wt

, Vg=f).

Therefore, for conservative forces f the classical problem with constant viscosity and (1) have the
same solutions: the equations become the well-known equation of the statics of the fluids and this fact

shows that the model described by (1) is consistent.

3 Proof of Theorem 1

We begin with two technical results:

Lemma 1 Assume (8) (5) (6); then:

(1) there exists a constant w = w(no,n,Q) > 0 such that if f € Y and (u,p) € X is a solution of (1)
then [lullv < w[[Pflly

(i) for all p € W™ the bilinear form on'V

Yu,v € V [u,v]p = / n(p)(Vu+ Vi) : Vo
Q

defines a scalar product which induces a norm equivalent to || - ||v.
Proof. Multiply (1) by u, integrate by parts to obtain

/ n(p)(Vu+V7Tu) : Vu = / uf

Q Q
and remark that [uf = [ouPf by the imbedding V C G. Next, note that
1
(Vu+V7Tu) : Vu = 5 (Vu+ V) (Vu+ Vi) >0 (8)

and that, by the divergence Theorem,

/QVU:VTu:/QV-[(u-V)u}:/(9Q7n[(u-V)u]:O;

4



hence, by (3)
770/Q |Vu|2 < /Qn(p)(Vu—ﬁ—VTu) Vu . 9)

m [ IV < [ Py
Q Q
and (7) follows by Schwarz inequality and the imbedding Y ¢ H™ L.

Therefore, we have

The bilinear form [u,v], is clearly symmetric and by (9) it is also a positive form. By the imbedding

W L% and by (3) we infer that
vp e Wt 3C, >0 such that Cp >n(p) >no forae xe€);

hence, by (8) we get
YueVv 770/ |Vu|? < / n(p)(Vu+ Vi) : Vu < Op/ |Vaul|? |
Q Q Q
which proves (). O

The following lemma is obtained by slight modifications of well-known results about the classical

Stokes problem:

Lemma 2 Assume (3) (5) (6) and letp € W tL5 - then, for all g €Y there exists a unique solution
(v,q) € X of the equation

-~V [n(w)(w + VTU)} +Vg=g in Q. (10)

Proof. If n(y) = n the result is well-known, see [4].

If n = n(v), by Lemma 1 the bilinear form [-, ], is coercive: hence, by standard estimates for elliptic
operators one has that if (10) admits a solution (v, q) € X, then ||(v,¢)||x < ¢||g|ly. Build a homotopy
connecting (10) and the classical Stokes problem: then Proposition 6.1 in [9] gives the result. O

Next, we prove some regularity properties of ¢:
Lemma 3 Assume (8) (5) (6) and let @ be the operator defined in (7). Then ® € C(X,Y).

Proof. Given (u,p), (v,q) € X we have

12(u,p) =2, 9)lly < ) —1(@) (Ve + VW) lmir + @)V —v) + V(@ = 0)][lms
+llp = gllmt1 + [((w =) - V)ullm + [[(v- V) (w = v)[lm

< @) = n(Dllmrllullmrz + (@ mialle = vllmi
Fllp = glmta + 1w = vllmsr(ullmss + l[0llmta).
(11)
If ¢ — p in W™HLs then we can show that n(q) — n(p) in W™+, Thus from (11) we obtain the
continuity of ®. O



Lemma 4 The Fréchet-derivative ' of ® is continuous at any point (0,1),v € Wb,

Proof. By a straightforward calculation one verifies that for any (u,p) € X the operator ® has a
Fréchet-derivative @' (u,p) : X — Y defined by ®'(u, p)[v, q] = ®u(u,p)[v] + ®p(u,p)[g] where

@y (u, p)[v] = =V - [np)(Vv + V)] + (u- Vv + (v V)u
Oy (u,p)lg] = [T =1/ (p)(Vu+ VTu)Vq + [ (p)Au — 0 (p)(Vu + VTu)Vplq .

Then, we have

IA

IV - [(n(p) = n(@)) (Vo + V)l + [ (- V)0l + [ (v - V)l

cln@) =) lmr1llvllmiz + clullmy2l[vlmrz2 -

1w (u, p) o] = @u(0, ) [v]|ly

IA

Thus we obtain

1w (u, p) = Lu(0, )l 2x,v) < clln(p) = n(@)llmr1 + cllullmya

which goes to 0 as ||u,p — ¢||x — 0. For &, we proceed similarly. O

Proof of Theorem 1. Given ¢ € W +1’5, we have ®(0,) = V. ® is continuous on X and &' is
continuous at (0,7) because of Lemmata 3 and 5. Since ®'(0,¢)[v,q] = =V - [n(¥))(Vv + VTv)] + Vg,
®'(0,) is an invertible operator from Lemma 2. Thus the result follows by applying the local inversion

theorem. O
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