Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity

Filippo Gazzola

Dipartimento di Scienze T.A. - via Cavour 84, 15100 Alessandria (Italy)

Paolo Secchi

Dipartimento di Elettronica per l'Automazione - via Branze 38, 25123 Brescia (Italy)

Abstract

We consider the stationary Navier-Stokes equations with a pressure-dependent viscosity. For "almost conservative" external forces, we prove by application of the local inversion theorem that the homogeneous Dirichlet problem admits a unique regular solution.

1 Introduction

In this paper we study the stationary problem

$$\begin{cases}
-\nabla \cdot [\eta(p)(\nabla u + \nabla^T u)] + \nabla p + (u \cdot \nabla)u = f & \text{in } \Omega \\
\nabla \cdot u = 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

where the unknowns are the vector function u and the scalar function p and Ω is an open bounded set of \mathbb{R}^n ($n \geq 2$) with smooth boundary $\partial\Omega$. This problem represents Navier-Stokes equations with a pressure-dependent viscosity: u is the velocity of the fluid, p its pressure, η its viscosity and f an external force acting on the fluid. Our research is motivated by physical experiments, indeed the viscosity η of real fluids may depend on the pressure and on the temperature: this dependence is best represented by Eyring's equation [1, 5]

$$\eta(p,T) = a\sqrt{T} \cdot \exp\left(\frac{b+cp}{T}\right)$$
(2)

where T denotes the temperature of the fluid and a, b, c > 0 are constants depending on the nature of the fluid; we deal with a fluid at constant temperature so that the viscosity η only depends on p, i.e. $\eta = \eta(p)$. We require the function η to satisfy the realistic assumptions

$$\eta \in C^{m+3}(\mathbb{R}) \quad \text{and} \quad \inf_{x \in \mathbf{R}} \eta(x) = \eta_0 > 0 ,$$
(3)

where $m \in \mathbb{N}$ will be chosen depending on the regularity we expect for the solution of (1). To remove an indeterminacy already present in the classical Navier-Stokes equations we also need a condition on p: more precisely, we will assume that the mean value of p over Ω is known.

Navier-Stokes equations with a pressure-dependent viscosity were first studied by Renardy [6] in the 3D case; Renardy remarks that if (2) does not break down for large pressures we cannot even guarantee the existence of a pressure p for a prescribed velocity field u and body force f: under the assumptions that η is sublinear at infinity, that $|\eta'|_{\infty} = \eta'_{\infty} < +\infty$ an existence and uniqueness result for the evolution equation is proved. Moreover, Renardy remarks that the stationary equations (1) may lose their ellipticity unless a condition on the eigenvalues of the tensor $(\nabla u + \nabla^T u)$ is assumed; more precisely, it is necessary to assume that

the eigenvalues of
$$(\nabla u + \nabla^T u)$$
 are strictly less than $\frac{1}{\eta'_{\infty}}$. (4)

In the stationary case, the main result of Renardy is an existence and uniqueness result for p (with given mean value) to satisfy (1) in a suitable weak sense if the velocity u is known and (3) (4) hold. This result is useful in view of the elimination of the pressure p in the equation: indeed to eliminate the pressure in (1) we cannot make use of Hodge projection (see [7]) as for the classical problem and we must solve a nonlinear elliptic equation in divergence form.

In a subsequent paper [2] a similar result is proved (in the case n = 3) by taking stronger assumptions on η , by weakening the regularity assumptions on u and f and by replacing (4) with

$$|\nabla u|_{\infty} < \frac{1}{2\eta_{\infty}'\sqrt{6}}$$
;

the existence of a unique function p (with given mean value) satisfying (1) in a suitable weak sense is then proved. In [2] a converse result is also proved: if the pressure p is known and belongs to a suitable neighborhood of its mean value then there exists a unique u satisfying (1) in a "complementary" weak sense; the proofs of these results involve Helmholtz-Weyl decomposition of the space $\mathbf{L}^2(\Omega)$.

The aim of this paper is to prove, by application of the local inversion theorem, the existence of a unique regular solution to (1) when the external force f is "almost conservative" in a suitable sense: this result will be used in a forthcoming paper [3] to prove local existence and uniqueness for the evolution problem under the only assumption (3) on the viscosity.

2 Statements of the results

We assume that $\Omega \subset \mathbb{R}^n$ is an open bounded set satisfying

$$\partial \Omega \in C^{m+2} \tag{5}$$

for some integer m. With bold capital letters (\mathbf{L}^2 , \mathbf{H}^1 , \mathbf{V} ,...) we denote functional spaces of vector functions and with usual capital letters (L^2 , H^1 ,...) we denote functional spaces of scalar functions.

To simplify notations we set $L^2:=L^2(\Omega)$, $\mathbf{H}^1:=\mathbf{H}^1(\Omega)$,... With $W^{m,s}$ we represent Sobolev spaces of functions with generalized derivatives up to order m in L^s , with $\|\cdot\|_m$ we denote the corresponding norm and with $W_0^{m,s}$ the $W^{m,s}$ -closure of the space C_c^{∞} of smooth functions with compact support in Ω ; $H^m:=W^{m,2}$ represent the Hilbertian Sobolev spaces. Given Banach spaces \mathbf{X},\mathbf{Y} , we denote by $\mathcal{L}(\mathbf{X},\mathbf{Y})$ the space of linear continuous operators from \mathbf{X} to \mathbf{Y} and by $\|\cdot\|_{\mathcal{L}(\mathbf{X},\mathbf{Y})}$ its norm.

We also need the spaces arising from Helmholtz-Weyl decomposition of the Hilbert space L^2 (see [8])

$$\mathbf{G} := \{ f \in \mathbf{L}^2; \ \nabla \cdot f = 0, \ \gamma_n f = 0 \} \qquad \mathbf{G}^{\perp} := \{ f \in \mathbf{L}^2; \ \exists g \in H^1, \ f = \nabla g \}$$
$$\mathbf{V} := \{ f \in \mathbf{H}_0^1; \ \nabla \cdot f = 0 \}$$

where γ_n denotes the normal trace operator; the space \mathbf{V} is a Hilbert space when endowed with the scalar product $(u,v)_{\mathbf{V}}=(\nabla u,\nabla v)_{\mathbf{L}^2}$. It is well-known that $\mathbf{L}^2=\mathbf{G}\oplus\mathbf{G}^{\perp}$: we denote by \mathcal{P} (resp. \mathcal{Q}) the orthogonal projectors of \mathbf{L}^2 onto \mathbf{G} (resp. \mathbf{G}^{\perp}). The projections $\mathcal{P}f$ and $\mathcal{Q}f$ of a function $f\in\mathbf{L}^2$ are determined by solving the homogeneous Dirichlet problem for a Poisson equation and a Neumann problem for Laplace equation. Recall that \mathcal{P} is a linear continuous operator from $\mathbf{W}^{m,s}$ onto $\{f\in\mathbf{W}^{m,s};\ \nabla\cdot f=0,\ \gamma_n f=0\}$.

As in [6] we assume that the mean value of p over Ω is given, say \bar{p} : without loss of generality we take $\bar{p} = 0$; assume that

$$m \in \mathbb{N}$$
 and $s > 1$ satisfy $(m+1)s > n$ (6)

in order to have the imbedding $\mathbf{W}^{m+1,s} \subset \mathbf{L}^{\infty}$. Consider the spaces

$$\overline{W}^{m+1,s} := \left\{ g \in W^{m+1,s}; \int_{\Omega} g(x) \ dx = 0 \right\}$$

and $\mathbf{U}_{m,s} := \mathbf{W}^{m+2,s} \cap \mathbf{V}$ normed with the $\mathbf{W}^{m+2,s}$ -norm; the space $\mathbf{X}_{m,s} := \mathbf{U}_{m,s} \times \overline{W}^{m+1,s}$ is a Banach space when endowed with the norm

$$\forall (u, p) \in \mathbf{X}_{m,s}$$
 $\|(u, p)\|_{\mathbf{X}} = \|u\|_{m+2,s} + \|p\|_{m+1,s}$

The space $\mathbf{X}_{m,s}$ is the space where we will seek the solutions (u,p) of (1); to simplify the notations we omit the indices m and s on the spaces \mathbf{X}, \mathbf{U} . Set also $\mathbf{Y} := \mathbf{W}^{m,s}$, $\|\cdot\|_{\mathbf{Y}} = \|\cdot\|_{m}$. Finally, let us introduce the operator $\Phi: \mathbf{X} \to \mathbf{Y}$ (see Lemma 3) defined by

$$\Phi(u,p) = -\nabla \cdot [\eta(p)(\nabla u + \nabla^T u)] + \nabla p + (u \cdot \nabla)u . \tag{7}$$

Definition

Let $f \in \mathbf{Y}$, we say that (u, p) is a solution of (1) if $\Phi(u, p) \in \mathbf{Y}$ and $\Phi(u, p) = f$ a.e. in Ω .

Making use of an inversion argument we will prove

Theorem 1 Assume (3) (5) (6) and let $\psi \in \overline{W}^{m+1,s}$; then there exists a constant $R = R(\psi) > 0$ such that if $f \in \mathbf{Y}$ satisfies $||f - \nabla \psi||_{\mathbf{Y}} \leq R$, then (1) admits a unique solution $(u,p) \in \mathbf{X}$ in a suitable \mathbf{X} -neighborhood of $(0,\psi)$. Moreover, the map $f \mapsto (u,p)$ is continuous from \mathbf{Y} to \mathbf{X} . In particular, there exists $\overline{R} > 0$ such that if $||f||_{\mathbf{Y}} \leq \overline{R}$, then (1) admits a unique solution in a suitable \mathbf{X} -neighborhood of (0,0).

In particular, we have

Corollary 1 Assume (3) (5) (6) and let $f \in \mathbf{Y}$ be such that $\mathcal{P}f = 0$ (i.e. $f \in \mathbf{G}^{\perp}$); then (1) admits a unique solution $(u, p) \in \mathbf{X}$ given by

$$u \equiv 0$$
 $p = g$

where g is the zero mean value potential of f (i.e. $g \in \overline{W}^{m+1,s}$, $\nabla g = f$).

Therefore, for conservative forces f the classical problem with constant viscosity and (1) have the same solutions: the equations become the well-known equation of the statics of the fluids and this fact shows that the model described by (1) is consistent.

3 Proof of Theorem 1

We begin with two technical results:

Lemma 1 Assume (3) (5) (6); then:

- (i) there exists a constant $\omega = \omega(\eta_0, n, \Omega) > 0$ such that if $f \in \mathbf{Y}$ and $(u, p) \in \mathbf{X}$ is a solution of (1) then $\|u\|_{\mathbf{V}} \leq \omega \|\mathcal{P}f\|_{\mathbf{Y}}$
- (ii) for all $p \in \overline{W}^{m+1,s}$ the bilinear form on \mathbf{V}

$$\forall u, v \in \mathbf{V}$$
 $[u, v]_p := \int_{\Omega} \eta(p)(\nabla u + \nabla^T u) : \nabla v$

defines a scalar product which induces a norm equivalent to $\|\cdot\|_{\mathbf{V}}$.

Proof. Multiply (1) by u, integrate by parts to obtain

$$\int_{\Omega} \eta(p)(\nabla u + \nabla^T u) : \nabla u = \int_{\Omega} u f$$

and remark that $\int_{\Omega} uf = \int_{\Omega} u\mathcal{P}f$ by the imbedding $\mathbf{V} \subset \mathbf{G}$. Next, note that

$$(\nabla u + \nabla^T u) : \nabla u = \frac{1}{2} (\nabla u + \nabla^T u) : (\nabla u + \nabla^T u) \ge 0$$
(8)

and that, by the divergence Theorem,

$$\int_{\Omega} \nabla u : \nabla^T u = \int_{\Omega} \nabla \cdot [(u \cdot \nabla) u] = \int_{\partial \Omega} \gamma_n [(u \cdot \nabla) u] = 0 \ ;$$

hence, by (3)

$$\eta_0 \int_{\Omega} |\nabla u|^2 \le \int_{\Omega} \eta(p)(\nabla u + \nabla^T u) : \nabla u . \tag{9}$$

Therefore, we have

$$\eta_0 \int_{\Omega} |\nabla u|^2 \le \int_{\Omega} u \mathcal{P} f$$

and (i) follows by Schwarz inequality and the imbedding $\mathbf{Y} \subset \mathbf{H}^{-1}$.

The bilinear form $[u,v]_p$ is clearly symmetric and by (9) it is also a positive form. By the imbedding $\overline{W}^{m+1,s} \subset L^{\infty}$ and by (3) we infer that

$$\forall p \in \overline{W}^{m+1,s} \quad \exists C_p > 0$$
 such that $C_p \ge \eta(p) \ge \eta_0$ for a.e. $x \in \Omega$;

hence, by (8) we get

$$\forall u \in \mathbf{V}$$
 $\eta_0 \int_{\Omega} |\nabla u|^2 \le \int_{\Omega} \eta(p)(\nabla u + \nabla^T u) : \nabla u \le C_p \int_{\Omega} |\nabla u|^2$,

which proves (ii).

The following lemma is obtained by slight modifications of well-known results about the classical Stokes problem:

Lemma 2 Assume (3) (5) (6) and let $\psi \in \overline{W}^{m+1,s}$; then, for all $g \in \mathbf{Y}$ there exists a unique solution $(v,q) \in \mathbf{X}$ of the equation

$$-\nabla \cdot \left[\eta(\psi)(\nabla v + \nabla^T v) \right] + \nabla q = g \qquad in \quad \Omega . \tag{10}$$

Proof. If $\eta(\psi) \equiv \eta$ the result is well-known, see [4].

If $\eta = \eta(\psi)$, by Lemma 1 the bilinear form $[\cdot, \cdot]_{\psi}$ is coercive: hence, by standard estimates for elliptic operators one has that if (10) admits a solution $(v, q) \in \mathbf{X}$, then $\|(v, q)\|_{\mathbf{X}} \le c\|g\|_{\mathbf{Y}}$. Build a homotopy connecting (10) and the classical Stokes problem: then Proposition 6.1 in [9] gives the result.

Next, we prove some regularity properties of Φ :

Lemma 3 Assume (3) (5) (6) and let Φ be the operator defined in (7). Then $\Phi \in C(\mathbf{X}, \mathbf{Y})$.

Proof. Given $(u, p), (v, q) \in \mathbf{X}$ we have

$$\|\Phi(u,p) - \Phi(v,q)\|_{\mathbf{Y}} \leq \|[\eta(p) - \eta(q)](\nabla u + \nabla^{T}u)\|_{m+1} + \|\eta(q)[\nabla(u-v) + \nabla^{T}(u-v)]\|_{m+1} + \|p - q\|_{m+1} + \|((u-v) \cdot \nabla)u\|_{m} + \|(v \cdot \nabla)(u-v)\|_{m}$$

$$\leq c\|[\eta(p) - \eta(q)]\|_{m+1}\|u\|_{m+2} + c\|\eta(q)\|_{m+1}\|u - v\|_{m+2} + \|p - q\|_{m+1} + \|u - v\|_{m+1}(\|u\|_{m+1} + \|v\|_{m+1}).$$

$$(11)$$

If $q \to p$ in $W^{m+1,s}$, then we can show that $\eta(q) \to \eta(p)$ in $W^{m+1,s}$. Thus from (11) we obtain the continuity of Φ .

Lemma 4 The Fréchet-derivative Φ' of Φ is continuous at any point $(0, \psi), \psi \in \overline{W}^{m+1,s}$.

Proof. By a straightforward calculation one verifies that for any $(u, p) \in \mathbf{X}$ the operator Φ has a Fréchet-derivative $\Phi'(u, p) : \mathbf{X} \to \mathbf{Y}$ defined by $\Phi'(u, p)[v, q] = \Phi_u(u, p)[v] + \Phi_p(u, p)[q]$ where

$$\Phi_u(u,p)[v] = -\nabla \cdot [\eta(p)(\nabla v + \nabla^T v)] + (u \cdot \nabla)v + (v \cdot \nabla)u$$

$$\Phi_n(u,p)[q] = [\mathbf{I} - \eta'(p)(\nabla u + \nabla^T u)]\nabla q + [-\eta'(p)\Delta u - \eta''(p)(\nabla u + \nabla^T u)\nabla p]q.$$

Then, we have

$$\|\Phi_{u}(u,p)[v] - \Phi_{u}(0,\psi)[v]\|_{\mathbf{Y}} \leq \|\nabla \cdot [(\eta(p) - \eta(\psi))(\nabla v + \nabla^{T}v)]\|_{m} + \|(u \cdot \nabla)v\|_{m} + \|(v \cdot \nabla)u\|_{m}$$

$$\leq c\|\eta(p) - \eta(\psi)\|_{m+1}\|v\|_{m+2} + c\|u\|_{m+2}\|v\|_{m+2}.$$

Thus we obtain

$$\|\Phi_u(u,p) - \Phi_u(0,\psi)\|_{\mathcal{L}(\mathbf{X},\mathbf{Y})} \le c \|\eta(p) - \eta(\psi)\|_{m+1} + c \|u\|_{m+2}$$

which goes to 0 as $||u, p - \psi||_{\mathbf{X}} \to 0$. For Φ_p we proceed similarly.

Proof of Theorem 1. Given $\psi \in \overline{W}^{m+1,s}$, we have $\Phi(0,\psi) = \nabla \psi$. Φ is continuous on \mathbf{X} and Φ' is continuous at $(0,\psi)$ because of Lemmata 3 and 5. Since $\Phi'(0,\psi)[v,q] = -\nabla \cdot [\eta(\psi)(\nabla v + \nabla^T v)] + \nabla q$, $\Phi'(0,\psi)$ is an invertible operator from Lemma 2. Thus the result follows by applying the local inversion theorem.

References

- [1] H. Eyring, D. Frisch, J.F. Kincaid, Pressure and temperature effects on the viscosity of liquids, J. Appl. Phys. 11, 1940, 75-80
- [2] F. Gazzola, On stationary Navier-Stokes equations with a pressure-dependent viscosity, Rend. Ist. Lomb. Sci. Lett. Sez. A, Vol.128, 1994, 107-119
- [3] F. Gazzola, A note on the evolution Navier-Stokes equations with a pressure-dependent viscosity, to appear on Zeit. Ang. Math. Phys.
- [4] Y. Giga, Domains of fractional powers of the Stokes operator in L_r spaces, Arch. Rat. Mech. Anal. 89, 1985, 251-265
- [5] E.M. Griest, W. Webb, R.W. Schiessler, Effect of pressure on viscosity of higher hydrocarbons and their mixtures, J. Chem. Phys. 29, 4, 1958, 711-720
- [6] M. Renardy, Some remarks on the Navier-Stokes equations with a pressure-dependent viscosity, Comm. Part. Diff. Eq. 11, 7, 1986, 779-793
- [7] R. Temam, Navier-Stokes equations, theory and numerical analysis, North-Holland, 1979
- [8] H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7, 1940, 411-444
- [9] E. Zeidler, Nonlinear functional analysis and its applications, Vol. I, Springer-Verlag, 1986