Existence and numerical approximation
of periodic motions of an infinite lattice of particles *

G. Arioli
Dipartimento di Matematica, via Saldini 50, 20133 Milano Italy

F. Gazzola
Dipartimento di Scienze T.A., via Cavour 84, 15100 Alessandria Italy

Abstract

We prove the existence of periodic motions of an infinite lattice of particles; the proof
involves the study of periodic motions for finite lattices by a linking technique and the
passage to the limit by means of Lions’ concentration-compactness principle. We also give a
numerical picture of the motion of some finite lattices and of the way the solutions for finite
lattices approach the solution for the infinite lattice by a technique developed by Choi and
McKenna [6].

1 Introduction and variational setting

In this paper we prove that an autonomous dynamical system with infinite degrees of freedom
consisting of a 1-dimensional lattice of particles, each interacting with its nearest neighbors by
means of a force belonging to a certain class, admits a nontrivial periodic motion of finite energy
for any assigned period T

The state of the lattice at time ¢ is represented by a sequence q(t) = {q:(t)}, i € Z, where ¢;(t)
is the state of the i-th particle; the equation governing ¢;(¢) reads

Gi = Pi_1(qi-1 — @) — Pi(q — qir1) - (1)
We define the potential ® of the system by

®:R*—1R (g =) Pi(gi—gqir1)
iez

*To appear on ZAMP



so that the infinite equations (1) can be written in vectorial form:
G =—'(q) - (2)
For all ¢ € Z we assume the potential ®; to satisfy
®;(x) = —ayz?® + V()
where «; > 0 and

36 > 0 such that V/(x)xz > (24 6)Vi(z) > 0, Vx € R
Vifz) =0<=2=0

v, e Lt

loc

Jdm € IN such that ®,4,, = P, .

Note that the above conditions imply that Vi € Z ®;(0) = 0, V; is superquadratic both at the
origin and at infinity and that ®; has either a strict local maximum (if o; > 0) or a strict global
minimum (if o = 0) in 0.

In a previous paper [2] the authors proved that if «; is strictly positive for all i € Z and the
period T is large, then the system admits a nontrivial solution, which is obtained as a critical
point of mountain pass type (see [1]) for a suitable functional; the hypothesis a; > 0 implies
that the interparticle forces are repulsive-attractive, i.e. repulsive for small displacements and
attractive for large displacements.

By allowing the parameters «; to be 0, we consider here purely attractive forces as well. The
existence of a nontrivial periodic solution of finite energy for this system may be surprising,
indeed one could expect that an infinite lattice of particles interacting with strongly nonlinear
conservative forces is highly ergodic, i.e. it tends to distribute the energy among the particles,
while the existence of a periodic motion of finite energy suggests lack of ergodicity. This physical
interpretation would be much more interesting and meaningful if some kind of stability results
were available, but the only results of such type known to the authors (see [4]) cannot be applied

to this problem. For further physical interpretation of the problem see [10, 12].

From the analytical point of view the problem we study here is quite different to the one in
[2], indeed the mountain pass geometry is replaced by a linking [9]; such linking is infinite
dimensional and the technique developed by Benci and Rabinowitz in [5] to handle this kind

of problems cannot be applied, due to the lack of compactness of the functional. Therefore we



address the problem by proving the existence of solutions for finite lattices and taking the limit.
Another example of a strongly indefinite variational problem with lack of compactness is studied
in [11].

The approximation of the periodic motion in the infinite lattice by motions of finite lattices
is also interesting for numerical applications, indeed even if the procedure adopted in [2] leads
more directly to the result of existence when compared to the method adopted here, it cannot
be used for the numerical study of the problem.

The following theorem summarizes our results:

Theorem 1 Assume (P); then VT > 0 system (2) admits a nonzero T-periodic solution of finite
energy.
Furthermore if oy = 0 Vi this solution is nonconstant YT > 0, otherwise 3T > 0 such that if

T > T the solution is nonconstant.

Let S' = [0,7]/{0,T}; our framework is the following Hilbert space:

T T
sz{qem(s%m)% /0 qo(t)dt =0, 3 /0 (@) + (@ (1) - a1 (£)?] dt<oo}

i€z
endowed with the scalar product
T T
(@,p) = / Gi(t)pi(t)dt + ) / (qi(t) — qis1(8))(pi(t) — piga (£))dt . (3)
icz Y icz /0
It is necessary to impose fg qo(t)dt = 0 or an equivalent condition in order to have (3) defining a
scalar product; it can be checked that such a condition does not affect the nature of the critical

points of the functional we consider, that is J : H — IR defined by

1@y =3 [ ik [ e

The properties of the potential imply that J is well defined on H and that J € C'(H,IR) (see
Proposition 1 in [2]). We prove Theorem 1 by showing that the functional J admits a critical
point; note that due to its translation invariance, the functional does not satisfy the Palais-Smale

condition.

This paper is organized as follows: in section 2 we prove the existence of critical points ¢(™
for the functional corresponding to periodic finite lattices and we give uniform estimates of the

critical levels and of the norms of ¢™ when suitably embedded in the infinite system. In section



3 we use Lions’ concentration-compactness technique [8] and the results of section 2 to take
the limit and prove the existence of a critical point for J. In sections 4 and 5 we describe the
application of an algorithm developed by Choi and McKenna [6] to compute the solutions for
finite lattices in the case of repulsive-attractive interactions; the numerical results we obtain
describe the process of approximation of the solution for the infinite lattices adopted in our

proof.

2 Periodic motions of the finite system

We first consider for all n = km (m as in (P), k € IN) the system (S,) consisting in a periodic
lattice of 2n particles, whose motion is described by (1) for ¢ € {—n,...,n— 1} (and to simplify

the notation we will consider g, = q—,). To study this finite problem we use the set of functions

T
H, = {q € HY(S', R)%*, / qo = o}
0

which is a Hilbert space when endowed by the scalar product

n—1 T
@p)i= 30 [ GOR0 + (@) = gm0 —pa®)]di
define also L2 := L?(S';IR)?". We can continuously embed H,, into H by means of the following
operator
1 (T e
# 5 anoa(t)dt fi>n—1
Y,: H,—H T fO

where Qi(t) =< a(t) ifi € [-n,n—1]
7 Jo a-n(t)dt ifi<-—n.

Consider the functional

na = 3 [ 360 - 00 - aa)] dr

i=—n
a periodic solution of system (S,,) is a critical point of J,,. Note that the functionals J,, corre-

sponding to finite lattices do satisfy the Palais-Smale condition:
Lemma 1 Assume (P); then J,, satisfies the Palais-Smale condition for all n € IN.

Proof. Let ¢*) be a Palais-Smale sequence, then (¢; denote positive constants and e — 0)

c1(L+exllg®l) = 27u(q®) — T4 (g®)[g*)]
> 8 S Vila™ =l )dt > a8 5, fi (0 — gl)PHdt e,



hence

T
> [ @ =P < eatt + <),

T
|1 < es(1 4 <ullg® )

as J,(¢™®) is bounded, and [|¢'®|| is bounded as well.
By the compact embedding H,, C L2 we infer that there exists ¢ € H, such that, up to a

2. since ||J” (¢™®)|| — 0 we also have ¢*) — ¢ in

(2]

subsequence, ¢'¥) — ¢ in H,, and ¢® — gin L

L2 and the assertion follows. a
Next we prove that the geometrical requirements of the linking theorem are satisfied:

Lemma 2 Assume (P); then for all n € IN there exists a finite dimensional subspace V,, of Hy,
and a subspace Wy, such that:

(i) Voo ® W, = Hj,.

(%) 3o, > 0 such that J, > o on 0B, N W,.

(iii) AR, > r, Jw € W, such that ||w| > r and if Dg, = (Br, N Vy) ® [0,w] then J, < 0 on
O0Dg,, .

Moreover the constants «, r and the vector w are independent of n.

Proof. We first consider the case where a; = 0 Vi.

(i) Let V}, be the subspace of the constant functions and W,, = V,;'; then dim V;, = 2n.

(i) Let V be the infinite dimensional subspace of H spanned by the constants and let W = V.
There exist two constants «,r > 0 such that J(q) > « for all ¢ such that ¢ € 9B, N W, because
Sille — qir1ll? < cllgl* (see [2]) and V; is superquadratic in 0; the assertion follows since
W, C W by the operator T,.

(iii) The superquadratic behaviour of V; at infinity implies that for all ¢ € H,, there exists 7 > 0
such that J,(vq) < 0, hence we can choose w € Wy such that the assertion holds ¥n.

If a; > 0 for some ¢ the proof is similar: in this case V), can be taken to be a subspace of the

space of constants; if a; > 0 Vi we have V,, = {0} and the linking is in fact a mountain pass. O

Now we can prove the existence of critical points for J, and we can uniformly estimate their

norms and critical levels; we need such estimates when we take the limit for n — oc.



Theorem 2 Assume (P) and let a, R,, and Dpg, be as in Lemma 2, then the functional J,, has
a positive critical value

b, = inf T (h(q)) ,
pnf e (h(q))

where I'y, = {h € C(Dg,,,Hy); h(q) =qVq € 0Dg,}.
Furthermore 3b, p1, p2 > 0 (independent of n) such that the following estimates hold:

0<a<b, <b, 0<p1 < [lg™|| < p (4)
where ¢ is a critical point at level by,.

Proof. By Lemma 1 J,, satisfies the Palais-Smale condition; the fact that b, is a critical level
follows from Lemma 2 and from the linking theorem (see [9]).

The estimate b, > a > 0 follows from Lemma 2 (ii); let ¢™ be a critical point at level by, the
estimate ||¢"™|| > p; > 0 follows from the inequality ¢|¢™||? > J,.(¢") > a.

Next, notice that for all integers n the identity is in I',, and therefore
bn <max{Jn(q); q € DR, } ;

it can be easily seen that there exists b > 0 such that max{J,(q); ¢ € Dg,} <b, Vn.
Let I := {i € Z; o; = 0}, for each n let I, := IN{—n,...,n—1} and denote by dz(-n) = ql(n)—qz-(z)l;
the estimate ||q¢(™|| < pa follows if we prove that there exist three positive constants ¢; (i = 1,2, 3)

such that
a>S1d"B  e= S MBS a3

icZ idl, i€l
Note that

2 22y = 2n(a™) = Jia™)g™)
n—1 T - .
=5 [ ) - v =5 S [ vy,

1=—n 1=—n

and since J,,(¢") < b we get

dey, ¢2 > 0 such that ¢ > Z qu(n)H% and ¢y > Z Hdz(n)H% ; (5)
icZ il
by the embedding H' C L™ we also get

>3 d™M%
igI



If a; > 0 for all ¢ the proof is complete, otherwise note that by integrating equations (1) we infer

that there exists &(™ such that
| R N I N
T/ Ld™y = k™ Vi€ {—n,...,n—1} and therefore T/ V(Y =k Yiel,. (6)
0 0

Note that k(" — 0 for n — +oc: indeed if k("] > £ > 0 (assume e.g. that £ > & > 0), then

there exists & > 0 such that the sets KZ-(H) = {t € [0,T]; dz(»n)(t) > ¢’} have strictly positive
d(”)

;) is bounded, we get a contradiction.

(n)

7

measure uniformly with respect to i,n; as >, fOT Vi(

By assumption (P) we can choose n so large that for all ¢ € I,, there exists a unique k; ~ such

(n)

that V/ (kz(n)) = k(™ and moreover for a given n the numbers ;" all have the same sign (assume

with no restriction that they are all positive, otherwise the proof holds with minor changes) and

k(n)

i+m

= kl-(n). By (6) and the continuity of V/, for all ¢ € I,, there exists t; € [0,T] such that
dgn) (t;) = k:z(n); furthermore, by Sobolev embedding HdEn)HQ > c\dz(»n)(t) - Jgn)] for all t € [0,T],
where d™ = L [T d\™(t), hence ||d{™||s > 2¢[d{™ (t) — k™|, that is

Y = clld™ s < d(t) < K +efld™ls (7)

Adding the previous inequalities (recall that n = km) we get

SHY =L S K <3 [+ d o) ®

i€ln ieI,N[1,m] i€,
n—1
and for all ¢ € [0,7], as Z dl(n) (t) = 0, we have

<3 oo -

iZIn

> d )

23 I

3 dM )

i€l

Taking the square of (8) we obtain

2

n2 Hn n 2
2 [Sierannom B < [eSien, 145711 + Sigr, 147 10o]
<nd (Sies, 14713+ Siga, Id|%) < ne”

finally (7) gives |d™ (#)] < k™ + ¢||d™]|, hence

S <e | SN IE+n S (k)2 <

i€l i€Z 1€ l,N[1,m]

and ) ep ||d§n) |2 is bounded. .



3 Periodic motions of the infinite system

In section 2 we proved the existence of periodic motions in periodic finite lattices with 2n
particles satisfying estimates (4); we will obtain a periodic motion for the infinite lattice by
considering the limit for n — co.

By the operators T,, we build a bounded Palais-Smale sequence for J; as already mentioned the
Palais-Smale condition does not hold for .J due to its translation invariance. To manage this
lack of compactness, we make use of Lions’ concentration-compactness Lemma [8] in a version

adapted to our needs (see [2] for the proof).

Lemma 3 (concentration-compactness)

() >0,Vi € Z and Vn € IN, such

Let {ul™} e be a sequence of sequences, ul™ = {ugn)}iez, u;

that Y, uz(»n) =\, A>0, Vn € IN. Then there exists a subsequence (still denoted by {u(™} ) such
that one of the following properties occurs:

a) Concentration.

There exists a sequence {Mp}nen of integers (which can be chosen to be multiples of m) such

that Ve > 0 there exists N € IN such that Yn € IN we have

Mp+Ne

Z uz(-n)z)\—s

i=Mp—N¢

b) Vanishing.

i
e ez

lim [sup u(n)] =0
¢) Dichotomy.
There exist a € (0,\) and a sequence {Mpy}nen of integers (which can be chosen to be multiples

of m) such that Ve > 0 there exist two integers N. and N! such that ¥n € IN we have:

<e€

Z uz(-n) —(A—a)

|é— My |>N!

Z uz(-n) -«

li— M| <N.

<e,

and N! — N. — +o0o when € — 0.

We apply Lemma 3 to the sequence of sequences {ugn)}neN, where

Lo _ ) @ @) 5 @ 0) — a0 i i < )
' 0 if i > n



and ¢(™ € H, is the critical point obtained by Theorem 2.
1) Vanishing cannot occur.

Lemma 4 Let ¢™ € H, be the critical point obtained by Theorem 2, then the sequence {ul(n)}

defined by (9) does not admit a vanishing subsequence.

Proof. Suppose the converse; then on the vanishing subsequence we know that Ve > 0 dn € IN

such that Vi € {—n,...,n} we have
o™ = aiflloo < (10)
and by the superquadraticity of V; we have
V(™ = gf)) < nelal™ — | with 1. — 0 as e — 0.

Then, by Theorem 2 we have
(n)

0 < 20 < 2Ju(q™) < Jp(a™) g™ + T, 3 Vi@ - alt)(a” - ah)
=zﬁww”¢m@%%m<m2h@ §b<%pg
and for & small enough (i.e. 7. small enough) we get a contradiction. O

2) Existence of bumps for the dichotomy and concentration cases.

As we excluded the vanishing case, either compactness or dichotomy holds; this means that
for all n most of the norm of ¢ (in case of concentration) or a fixed part of it (in case of
dichotomy) is “concentrated” around the particle labeled by M, (M, is as in Lemma 3). We
call “bump” this concentrated part. In both cases we achieve a sequence of functions ¢(™ whose
bump is in a finite part of the lattice. Due to the translation invariance of the functional, with
no restriction we can assume that M,, = 0 in Lemma 3. Our aim now is to build a Palais-Smale

sequence for both the concentration and the dichotomy case.

3) Concentration implies strong convergence.
We consider the case where the sequence ¢(™ admits a concentrated subsequence (which we still

denote by ¢™).

Lemma 5 Suppose that concentration holds for the sequence {uz(n)} defined in (9). Then
{Y,q"™} is a bounded Palais-Smale sequence for J in H.



Proof. First note that

J(Tnq™) = Jo(q™) / O, (g™ - / &, (¢ — i) +/ 5, —¢") (11)

and for all p € H, ||p|| =1,

J/( Z/ . 2 /‘I)I —C]Z+)1)(Pz‘—pz’+1)

=—n

/ o (@ "D —p / ®, (0 — a2 (a1 — pu)

(12)

¢"Nloo — 0

where q =& fO Z ( )dt. The last two terms vanish for n — oo because Hq_
|p—n—1 — P—nll2 < 1 and similarly the other term.

The sequence {an(”)} is bounded in H by Theorem 2. As we are in the concentration case, by
(11) it follows that 3o/, ' > 0 such that o/ < J(Y,g™) <V,

For all p € H,, such that ||p|| =1 we have

0:%@%m=zngﬁ%i S22 [T (g™ — ¢ (i — i)
- fO (qn )1 q(n))(pn—l - p—n)

and using again the fact that concentration holds, the last term goes to zero as n increases, by
the same reason of the last step. Finally using (12) we infer supy, | J (Yng™)[p] — 0, that is

Y,q¢™ is a Palais-Smale sequence. O

As the sequence T,,¢™ is bounded in H, up to a subsequence it converges weakly to a function
q € H: the convergence is in fact strong, as stated by the following Lemma whose proof follows

the same lines as Lemma 3 in [2].

Lemma 6 If concentration holds for {uz(-n)}, then Thg™ — ¢ strongly in H, hence q is a

nontrivial critical point of J in H.

The previous result states that if the sequence Y,,¢(™ is concentrated (i.e. {ugn)} is concentrated)
we obtain a nonzero solution g of problem (2); if 3¢ such that a; > 0 the potential ®; has nonzero
stationary points, therefore the solution we find could be an equilibrium point for the potential
®; we can exclude this for large period 1" by proving that under such condition the critical
level of the functional J is lower than the minimum level of a nonzero equilibrium point (see

Proposition 2 in [2]).

10



4) Dichotomy and truncation imply strong convergence.
Finally we consider the dichotomy case for the sequence {ugn)} by Lemma 3 we know that

Ja € (0, A) such that, up to a suitable translation, Ve >0 3N., N/ € IN such that

Z ugn) — Z ul(n)

|4 <Ne N.<|i|<N!

< g and <e.

Let e, be any positive sequence converging to 0 and ¥n € IN consider Q™ € H defined by

Lire at  iti> N,
QM) =1 o) if i < N, (13)

L™, (ydt ifi<—N., .

By similar arguments to those of Lemma 5 we infer that {Q(”)} is a bounded Palais-Smale
sequence for J in H and therefore 3¢ € H such that Q™ — ¢, up to a subsequence; proceeding

as in Lemma 4 in [2] one can prove

Lemma 7 If dichotomy occurs for {ul(n)} and if Q) is as in (18) then:
2 1] — a

b) QM — g in H (therefore ||q|| = «)

c) J'(q) =0 (therefore q is a nontrivial solution of (2))

The proof of Theorem 1 now follows as in [2].

Remark. The concentration-compactness lemma has been used for homogeneity with our pre-
vious paper [2], where this technique is used to prove a representation theorem for Palais-Smale
sequences; such result is used in [3] as a starting point to build multibump solutions. Disregard-

ing such possible applications one could achieve the proof of Theorem 1 more directly.

4 The numerical algorithm

In this section we describe the algorithm that we have used to obtain numerical approximations
of the periodic motions in finite lattices; we only consider the case when a; > 0 i.e. when
the linking geometry actually reduces to a mountain pass, although the authors feel that an
extension to the general case should not be too difficult to achieve.

Theorem 2 states that a nonzero solution for the system of 2n particles can be obtained as a

mountain pass point for the functional J,; we use an algorithm developed by Choi and McKenna

11



[6] to approximate numerically such mountain pass point for different values of n, and we show
how the limit for an increasing number of particles seems to appear.

We give a brief description of the algorithm, and we refer to [6] for an exhaustive treatment.
Let us first recall the geometric layout of the mountain pass theorem: one has two points in
a functional space which are divided by a mountain chain whose lowest “pass-point” is at a
higher level than the two points; then, under suitable compactness conditions (the Palais-Smale
condition or, for instance, the concentration case of Lemma 3), there exists a path whose highest
point is minimal, among all the paths connecting the two points. It can be proved that this
point is a critical point of the functional.

We cannot consider all possible paths, but we can choose a path, for instance the linear one,
and then pull it down along the steepest descent direction until this is not possible anymore.
Suppose that the following constants are chosen:

I, the number of particles

M, the number of steps to discretize the path

L, the number of mesh points to discretize each function g;.

The steps of the algorithm are the following:

a) We choose 0, which is a local minimum for J as starting point of the paths, while the ending
point will be w (see Lemma 2). The numerical procedure starts by defining an M x I x L array
{¢f} (m=0,...,M—1; 1=0,...,L—1; i=0,...,I —1) which represents the path we are
dealing with; m is the discretized path parametrization, n is the particle number and [ is the
discretized time. The first path is set to be the segment connecting 0 with w.

b) We look for the maximum of the functional along this path: by construction, if the path
mesh is fine enough, this is achieved for m = m with 0 < m < M.

¢) We improve the approximation of this maximum by a further subdivision of the path between
m—1and m+1.

d) We compute the steepest descent direction at point ¢"™. As we are dealing with an infinite
dimensional functional space where different norms are not equivalent, a definition of such a
direction must be given: we call steepest descent direction at point ¢ the direction pointed by
the vector p € H, ||p|| = 1, for which J'(q)[p] achieves its minimum. In order to compute p,

define the functional

I(p) = J'(q)[p] + Al|p|®

12



where A is a Lagrange multiplier. We require [ (’1 (p) = 0, i.e. we require the components of p to

be T —periodic solutions of the equations
2A[Bi + pir1 — 2pi + pic1] = —Gi — €i(qi — Git1) T Y_1(Gi-1 — @)  i=0,...,1-1. (14)
Equations (14) can be discretized and written in the form

AMp = f(q) ,

where A is a matrix which only depends on the number of particles I, the number of mesh
points L and the period T; f(q) is a I x L array which depends on ¢ and p is the unknown
I x L array. The Lagrange multiplier A can be computed a posteriori in order to choose the
appropriate value for ||p||.

Notice that for a large number of particles and for a sufficiently fine discretization we have to
solve a linear system of a remarkable number of equations (ca. 150 in our case), but this does
not slow down too much the algorithm because the matrix A~' can be computed once for all,
and then used to check different potentials or different starting paths.

e) Once the steepest descent direction has been found, we move the maximum point along it,
thus lowering the functional. Attention must be paid in order not to go too far away from the
pass point; to this purpose we set a limit for both the maximum norm of the displacement and
the maximum decrease of the functional.

f) We repeat steps b) and c) and we estimate ||J'(¢)||, where ¢ is the new maximum point: if

we are below a selected threshold we are done; otherwise we come back to point d).

The convergence of this algorithm is quite delicate; indeed if the displacement along the steepest
descent direction is too small it can happen that steps b) and ¢) have the opposite effect of steps
d) and e) and the algorithm enters a loop. On the other hand, if the displacement is too large
it is possible to miss the mountain pass point and in this case the algorithm converges to the
zero solution.

To improve the performance of the algorithm, we check at each step the distance (in the H-
norm) between the point of maximum and its nearest neighbors, and if such a distance becomes
too large we accumulate some mesh point around the maximum.

We insist on remarking that our description of the algorithm is purely made to let the reader
taste it: indeed the choice of the various thresholds is very delicate and further attention must

be paid to avoid the procedure to fail (see [6] for more details).

13



5 Some numerical results

We tried various configurations with different number of particles and potentials; to simplify the
structure of the program we chose all the interparticle potentials to be equal (®; = ®). Figures
1 and 2 represent our results for systems of respectively 8 and 14 particles with the following
choice of the potentials:

O(z) = —a? +at.

As a matter of fact we did not show the motion of particles -7, -6 and 6 in the second system,
as it is negligible.

We remark the following facts:

1) In both cases the particle in the middle of the lattice undergoes the oscillation of maximum
amplitude.

2) In both cases only the nearest and second nearest neighbor particles undergo an oscillation
of wide amplitude; the amplitude decreases quickly when getting farther away from the middle
particle.

3) The results for the systems are quite similar, which permits to conjecture that for an increasing
number of particles it would not change.

4) This algorithm produces in fact a Palais-Smale sequence which remains concentrated around
the particle in the middle of the lattice.

We also tested other kinds of potentials satisfying our assumptions and we obtained similar re-
sults, although some choices of potential raised some difficulties of convergence of the algorithm.
We can therefore guess the shape of the motion of an infinite lattice; it seems reasonable to
think that such a motion is well represented by motions of finite lattices, the other particles’

motion being negligible.
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