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Abstract We are interested in stability/instability of the zero steady state of the
superlinear parabolic equation ut +�2u = |u|p−1u in R

n ×[0, ∞), where the exponent
is considered in the “super-Fujita” range p > 1+4/n. We determine the corresponding
limiting growth at infinity for the initial data giving rise to global bounded solutions. In
the supercritical case p > (n+4)/(n−4) this is related to the asymptotic behaviour of
positive steady states, which the authors have recently studied. Moreover, it is shown
that the solutions found for the parabolic problem decay to 0 at rate t−1/(p−1).

1 Introduction

In the present paper we study existence and quantitative properties of global solu-
tions of the following Cauchy problem for superlinear parabolic equations with the
biharmonic operator as elliptic linear part

{
ut +�2u = |u|p−1u in R

n+1+ := R
n × [0, ∞)

u(x, 0) = u0(x) in R
n ,

(1)

where n ≥ 2, p > 1 + 4
n and u0 is a bounded initial datum with suitable behaviour at

∞. The decay of these solutions with respect to space |x| → ∞ and time t → ∞ is
investigated.
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Before entering into the details of (1), we recall that the corresponding superlinear
second order equation {

ut −�u = |u|p−1u in R
n+1+

u(x, 0) = u0(x) in R
n (2)

was intensively studied in [8,13,15,16,20]. It was discovered by Fujita [8] that the
exponent p = 1 + 2

n plays a fundamental role for the stability of the trivial solution
u ≡ 0 of problem (2). It turned out that 1 + 4

n is the biharmonic analogue of this
so-called “Fujita”-exponent. For the present paper, the following result relative to (2)
is of particular relevance:

Proposition 1 [16, Theorem 3.8]
Assume that p > 1 + 2

n . There exists α > 0 such that if

|u0(x)| ≤ α

1 + |x|2/(p−1)

then there exists a global strong solution u of (2). Moreover, there exists A > 0 such that

|u(x, t)| ≤ A

1 + |x|2/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1+ .

In fact, a slightly different result was stated in [16] but with the very same argu-
ments employed there, one also readily obtains Proposition 1. Subsequently, Wang
[20] performed a more detailed study of (2) and obtained refined stability/instability
results with a more precise description of the region of attraction of the trivial solution
u ≡ 0. In this connection several “critical exponents” turned out to be of importance,
being also related to the corresponding elliptic problem. For further results see, e.g.
[6,7] and references therein.

Most of the methods employed for the proof of Proposition 1 and related sub-
sequent results are special for second order equations and are in particular basing
upon auxiliary functions satisfying suitable differential inequalities and the maximum
principle. Such methods do not apply to (1), since not even a comparison principle is
available here. The major difficulty is the change of sign of the kernel of the linear
operator v �→ vt +�2v, namely

b(x, t) = f (η)
tn/4

, η = x

t1/4
, f (η) = ω0|η|1−n

∞∫
0

e−s4
(|η|s)n/2J(n−2)/2(|η|s)ds , (3)

where Jm denotes the mth Bessel function and ω0 a suitable constant such that∫
Rn

f (η)dη = 1.

In order to overcome this difficulty, Galaktionov–Pohožaev [10] introduced the
following self-similar majorizing kernel associated to (1):

b̃(x, t) := ω1t−n/4 exp

(
−µ

( |x|4
t

)1/3)
(4)

with suitable constants µ, D > 0 and

ω1 = 1∫
Rn exp

(−µ|y|4/3) dy
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such that
|b(x, t)| ≤ Db̃(x, t). (5)

Let us now mention some results already known for the parabolic biharmonic
problem (1) and the related Cauchy problem

{
ut +�2u = |u|p in R

n+1+
u(x, 0) = u0(x) in R

n.
(6)

In the “sub-Fujita” case 1 < p ≤ 1 + 4
n , Egorov et al. [3] show finite time blow up for

solutions to (6) provided the initial datum satisfies∫
Rn

u0(x)dx ≥ 0.

Assuming that u0 ≥ 0 and that (1) has a positive solution—which is not obvious due
to the oscillatory behaviour of the biharmonic “heat kernel” (3)—this would imply
finite time blow up also in this situation. For p > 1+ 4

n , Caristi and Mitidieri [1] obtain
global solutions of (6), provided the initial datum u0 belongs to L1(Rn) and obeys
the following growth condition at infinity with some constant c0 and the following
smallness condition:

0≤u0(x)≤min

{
α,

c0

1 + |x|β
}

, β>
4

p − 1
, α small enough in dependence of c0 and β.

(7)
This result generalises and extends previous results in, e.g. [2] and [4,10,11]. In the first
work, for initial data being small enough in an L1-sense, global existence of solutions
decaying to 0 at rate t−n/4 was proved in a more general setting basing upon linear
semigroup theory. In the latter works, for small exponentially fast decaying initial data,
the same decay rate t−n/4 and, moreover, the asymptotic profile of the solution were
calculated by means of perturbation theory. In particular, the time decay is governed
by the linear principal part. By (18) below, these results also imply the existence of
global solutions to (1) being majorised by those to (6).

Caristi and Mitidieri [1] also focused on blow-up results for the modified equa-
tion (6) in the case p > 1 + 4

n . They proved, e.g., finite time blow up for initial data
u0(x) = α

1+|x|4/(p−1) with large enough α. It does not seem to be obvious, however, to

conclude blow-up also for (1) from these results.
Several questions were left open by the just mentioned results. In particular, we

believe most interesting and challenging to find out if β in (7) can be allowed to be
β = 4

p−1 . In Theorem 1 we show that this is the case, namely if u0 satisfies (7) for

β = 4
p−1 and a sufficiently small α, then the solution to (1) is global. Our proof relies

on two crucial estimates (see Propositions 2 and 3 below) which seem to be a new
unifying tool for the study of parabolic problems such as (1) whose kernel is sign-
changing. In Remark 2 we also explain how our procedure may be (easily) extended
to general higher order semilinear parabolic equations such as ut + (−�)ku = |u|p−1u
with p > 1+ 2k

n . In some sense, we provide a unifying proof independent of the positiv-
ity of the kernel which applies to all k, including the “easy” case k = 1. Theorem 1 also
states that the global solution converges uniformly to the (stable) stationary solution
u ≡ 0 at a rate of t−1/(p−1), thereby giving the complete extension of Proposition 1
to higher order problems. Let us recall that in [5] stability of the trivial solution was
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obtained only for fast decay (exponential) initial data: here we extend it to the case
of slowly decaying u0.

In order to show that Theorem 1 is optimal with respect to the asymptotic decay
of the initial datum, one should also prove finite time blow up if this assumption is
violated. Theorem 2 below does not give the complete answer but it gives a strong
hint that blow up should occur in finite time for initial data decaying slower than
|x|−4/(p−1).

The asymptotic behaviour |x|−4/(p−1) is also important in the corresponding elliptic
problem

�2u = |u|p−1u in R
n. (8)

One might observe that a suitable multiple of x �→ |x|−4/(p−1) is a singular solution to
(8) if p > n/(n−4) and also an entire weak solution [in H2

loc(R
n)] if p > (n+4)/(n−4),

i.e. for supercritical exponents. In the latter case, the authors constructed entire reg-
ular radial solutions u to (8) and proved that |x|4/(p−1) · u(x) converges to a suitable
constant as |x| → ∞, so that the asymptotic behaviour of solutions to (8) is governed
by its singular weak entire solution. See [12] and also Corollary 1 below.

2 Results

In Definitions 1 and 2 we distinguish between two kinds of solutions.

Definition 1 We say that u is a strong solution of (1) over [0, T) if u ∈ C4,1(Rn×(0, T)),
if u is bounded on R

n × [0, t] for every t ∈ (0, T), if u solves (in the classical sense) (1)
and ‖u(t)− b(t) ∗ u0‖∞ → 0 as t → 0 (in particular, this implies that u(xm, t) → u0(x)
whenever t → 0 and xm → x for a.e. x ∈ R

n). The supremum T∗ of all T’s for which
u is a strong solution of (1) over [0, T) is called life span of the strong solution u. We
say that u is a global strong solution of (1) if T∗ = +∞.

We first show the existence of global strong solutions:

Theorem 1 Assume that n ≥ 2 and p > 1 + 4
n . There exists α > 0 such that if

|u0(x)| ≤ α

1 + |x|4/(p−1)
(9)

then there exists a global strong solution u of (1). Moreover, there exists A > 0 such that

|u(x, t)| ≤ A

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1+ . (10)

The assumption n ≥ 2 is purely technical and used to perform the proof of
Lemma 10.

Theorem 1 is somehow optimal. Indeed it was shown in [1] that if α is large and
equality holds in (9), then any positive solution of (1) blows up in finite time. More-
over, the asymptotic behaviour at infinity of the estimate in (9) is critical since in
the case p > (n + 4)/(n − 4), it corresponds to the asymptotic behaviour of positive
stationary radially symmetric regular and singular solutions of (1), see [12]. Therefore,
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Theorem 1 has the straightforward consequence:

Corollary 1 Assume that n ≥ 5 and p > (n + 4)/(n − 4). Let u be a stationary positive
radially symmetric solution of (1). There exists β > 0 such that if

|u0(x)| ≤ βu(x)

then the solution u of (1) is global. Moreover, there exists A > 0 such that (10) holds.

The strong solution found in Theorem 1 is globally bounded. We now deal with a
weaker notion of solution:

Definition 2 We say that u is a weak solution of (1) over (0, T) if u ∈ Lp
loc(R

n ×[0, T))
and

T∫
0

∫
Rn

|u|p−1uφ =
T∫

0

∫
Rn

u(−φt +�2φ)−
∫
Rn

u0φ(0) (11)

for all φ ∈ C∞
c (R

n ×[0, T)). The supremum T∗ of all T’s for which u is a weak solution
over (0, T) is called the life span of the weak solution. We say that u is a global weak
solution of (1) if T∗ = +∞.

We now introduce a suitable family of test functions.

Definition 3 We say that v ∈ H if the following facts occur:

(i) There exist ψ1 ∈ C∞
c (R

n) and ψ2 ∈ C∞
c (R+) such that v(x, t) = ψ1(x)ψ2(t).

(ii) ψ1(0) = ψ2(0) = 1 and v(x, t) > 0 in the interior of spt(v), the support of v.

(iii)
∫

spt(v)

|vt|p′ |v|1−p′
< ∞ and

∫
spt(v)

|�2v|p′ |v|1−p′
< ∞ where p′ = p

p−1 .

As pointed out in [18] (see also [1]), one has H �= ∅.
Then, we have

Theorem 2 Assume that u0 ∈ L∞(Rn) and that

λ := lim inf|x|→∞ |x|4/(p−1)u0(x) > 0 . (12)

There exists	 > 0 such that if λ > 	, then any weak solution u of (1) with initial datum
u0 satisfies one of the two following alternatives:

(i) u blows up in finite time, that is, T∗ < ∞;
(ii) for all v ∈ H and for all γ < 1 we have

lim inf
R→∞ R4p/(p−1)

∫
spt(v)

(
|u−(Ry, R4τ)|p − γ |u+(Ry, R4τ)|p

)
v(y, τ)dydτ > 0. (13)

If (12) is replaced by lim sup|x|→∞ |x|4/(p−1)u0(x) < 0, then the same statement holds
provided one switches u+ and u− in (13).

Let us also briefly comment on Theorem 2. Under the further assumption that
u0 ≥ 0 in R

n, a byproduct of the results in [1] shows that any nonnegative solution of
(1) blows up in finite time. Unfortunately, although we believe that for nonnegative
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initial data any global solution of (1) is eventually positive, as far as we are aware no
condition is known which ensures this property of the solution.

Theorem 2 states that if (12) holds and the solution u is global, then the negative
part of u is not neglectable with respect to the positive part. In some sense, the solu-
tion may be global only if the negative and positive parts are “perfectly balanced”.
We believe that under further suitable assumptions on u0 (such as positivity) case (ii)
never occurs and we have blow up in finite time.

Remark 1 By direct calculation, one can see that if there exists an entire smooth radial
solution v, decaying at infinity, of the equation

�2v = |v|p−1v + 1
4

rvr + 1
p − 1

v in R
n

then

u(x, t) := (1 + t)−1/(p−1)v
(
|x|(1 + t)−1/4

)
, (x, t) ∈ R

n+1+

is a (self-similar) solution of (1). These solutions were studied in some detail in [9] in
order to prove non-uniqueness results for (1) with unbounded initial data u0.

3 Proof of Theorem 1

During the proof of Theorem 1 we will need the following crucial statements whose
proofs are postponed, respectively, to Sect. 6 and 7.

Proposition 2 Assume that p > 1 + 4/n. There exists a constant C1 = C1(n, p,µ) > 0
such that for all (x, t) ∈ R

n+1+ , one has:

ω1

∫
Rn

exp

[
−µ

( |y|4
t

)1/3]
dy

tn/4(1 + |x − y|4/(p−1))
≤ C1

1 + |x|4/(p−1) + t1/(p−1)
.

Proposition 3 Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant C2 =
C2(n, p,µ) > 0 such that for all (x, t) ∈ R

n+1+ , one has:

ω1

t∫
0

∫
Rn

exp

[
−µ

( |y|4
s

)1/3]
dy ds

sn/4
(
1 + (t − s)1/(p−1) + |x − y|4/(p−1)

)p

≤ C2

1 + |x|4/(p−1) + t1/(p−1)
.

The proof of Proposition 3 is quite lengthy and delicate. For this reason, in Sect. 8
we give a much simpler proof of it under the additional constraints that n ≥ 5 and
p > n+4

n−4 .
Let D be as in (5). Then, we will prove Theorem 1 by taking

α := 1

2p/(p−1)Dp/(p−1)C1C1/(p−1)
2

. (14)
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Let b(t) = b(x, t) be the kernel defined in (3) and note that under the assumption
(9) we have u0 ∈ L∞(Rn). It is then clear that any strong solution u of (1) also satisfies
the integral equation

u(t) = b(t) ∗ u0 +
t∫

0

b(t − s) ∗ |u(s)|p−1u(s)ds. (15)

Conversely, it is well-known (see, e.g. [8, Proposition A4]) that a bounded solution of
the integral equation (15) is a strong solution of (1). Uniqueness of strong solutions
to (15) follows by the standard contraction mapping principle, see, e.g. [14, Sect. 3.3].

We study (15) by following the approach in [1,21,22] combined with the extremely
powerful Propositions 2 and 3. Let D be as in (5) and let

v0(x) := D|u0(x)|. (16)

Then, consider the equation

v(t) = b̃(t) ∗ v0 + D

t∫
0

b̃(t − s) ∗ vp(s)ds. (17)

In view of (5) and the existence proof below, it is clear that as long as v(t) exists, we
have a solution u to (15) satisfying

|u(x, t)| ≤ v(x, t). (18)

In particular, if we can show that v is globally defined, this will also prove that u is
globally defined. To this end, for all v ∈ L∞(Rn+1+ ) we define

B̃v(x, t) := b̃(t) ∗ v0 + D

t∫
0

b̃(t − s) ∗ vp(s)ds. (19)

For T > 0 and for

M := 1
(2DC2)1/(p−1)

(20)

we introduce the set

ST :=
{

v ∈ C(Rn × [0, T]); 0 ≤ v(x, t) ≤ M

1 + |x|4/(p−1) + t1/(p−1)

}
.

It is clear that

ST is a nonempty, closed and bounded convex subset of C(Rn × [0, T]). (21)

We claim that
B̃(ST) ⊂ ST . (22)

In order to prove (22), take v ∈ ST and consider B̃v as defined in (19). Clearly,
B̃v(x, t) ≥ 0. Moreover, by (9), (16) and Proposition 2 we have

[b̃(t) ∗ v0](x) ≤ DC1α

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1+ . (23)
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Furthermore, for v ∈ ST we get

t∫
0

b̃(t − s) ∗ vp(s)ds = ω1

t∫
0

∫
Rn

exp

[
−µ

( |y|4
s

)1/3]
vp(x − y, t − s)

sn/4 dy ds

≤ ω1Mp

t∫
0

∫
Rn

exp

[
−µ

( |y|4
s

)1/3]
dy ds

sn/4
(
1 + (t − s)1/(p−1) + |x − y|4/(p−1)

)p .

Using Proposition 3 we then obtain

t∫
0

b̃(t − s) ∗ vp(s)ds ≤ C2Mp

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1+ . (24)

Inserting (23, 24) into (19) and recalling (14)–(20), we finally obtain

B̃v(x, t) ≤ M

1 + |x|4/(p−1) + t1/(p−1)
for all (x, t) ∈ R

n+1+ ,

which proves (22).
Arguing as in [22, Lemma 3.1] (see also [1, Theorem 2.1]), we can also prove the

two following facts:

B̃ST is a compact subset (with respect to the L∞-norm) of ST , (25)

B̃ is continuous. (26)

In view of (21, 22, 25, 26), we may apply Schauder’s fixed point Theorem and infer
that B̃ has a fixed point vT ∈ ST . For any T > 0, we now define

VT(x, t) =
{

vT(x, t) if t ≤ T
vT(x, T) if t > T.

By applying a local version of Ascoli–Arzelà’s Theorem as in [1, p. 718] (see also [22,
p. 61]) we infer that, up to a subsequence, VT converges uniformly on compact subsets
of R

n+1+ to a (global) solution of (17). This completes the proof of Theorem 1. ��
Remark 2 The technique developed here may also serve to treat Cauchy problems
with polyharmonic elliptic principal part{

ut + (−�)k u = |u|p−1u in R
n+1+

u(x, 0) = u0(x) in R
n.

(27)

As in the biharmonic case one may consider a majorising kernel associated to (27)

b̃k(x, t) := ω1,kt−n/2k exp

⎛
⎝−µk

(
|x|2k

t

)1/(2k−1)
⎞
⎠ .

Propositions 2 and 3 continue to hold true provided one assumes p > 1 + 2k/n and

provided
( |y|4

t

)1/3
is replaced by

( |y|2k

t

)1/(2k−1)
, the exponent n/4 by n/2k and the

exponent 4/(p−1) by 2k/(p−1). The proofs of these generalised propositions require
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almost only straightforward changes except for the end of the proof of Lemma 5 in
the case k = 1, n = 2. In this special case one splits the last integral at 3T4/3 instead.

So, one may prove for (27) the same result as in Theorem 1 by changing 1 + 4/n
into 1 + 2k/n and 4/(p − 1) into 2k/(p − 1). This general result contains also Proposi-
tion 1 as a special case thereby providing a unified proof independent of the maximum
principle.

4 Proof of Theorem 2

Our proof is obtained by adapting the arguments in [1] to the case of sign-changing
solutions. Let v(x, t) = ψ1(x)ψ2(t) ∈ H and let K = spt(ψ1) and [0, T] = spt(ψ2). For
all R > 0 take

φR(x, t) := v
(

x
R

,
t

R4

)
= ψ1

( x
R

)
ψ2

(
t

R4

)

as test function in (11). Then, we obtain

R4T∫
0

∫
RK

|u(x, t)|p−1u(x, t)v
(

x
R

,
t

R4

)
dxdt +

∫
RK

u0(x)ψ1

( x
R

)
dx

= R−4

R4T∫
0

∫
RK

u(x, t)
[
−vt

(
x
R

,
t

R4

)
+�2v

(
x
R

,
t

R4

)]
dxdt =: I. (28)

In the sequel the c denote positive constants which may have different values also
when they appear in the same formula. We estimate the right hand side I of (28) as
follows. Fix γ < 1 and take δ := 1−γ

1+γ ; by Young’s inequality we know that there exists
Cδ > 0 such that

I = R−4

R4T∫
0

∫
RK

u(x, t) v1/p
(

x
R

,
t

R4

) −vt

(
x
R , t

R4

)
+�2v

(
x
R , t

R4

)

v1/p
(

x
R , t

R4

) dxdt

≤ δ

R4T∫
0

∫
RK

|u(x, t)|p v
(

x
R

,
t

R4

)
dxdt

+ Cδ
R4p′

R4T∫
0

∫
RK

∣∣∣vt

(
x
R , t

R4

)∣∣∣p′
+
∣∣∣�2v

(
x
R , t

R4

)∣∣∣p′

vp′−1
(

x
R , t

R4

) dxdt.

With the change of variables

x = Ry , t = R4τ , (29)
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we finally obtain

I ≤ δ

R4T∫
0

∫
RK

|u(x, t)|p v
(

x
R

,
t

R4

)
dxdt

+ CδRn−4/(p−1)

T∫
0

∫
K

|vt(y, τ)|p′ + ∣∣�2v(y, τ)
∣∣p′

vp′−1(y, τ)
dydτ

≤ δ

R4T∫
0

∫
RK

|u(x, t)|p v
(

x
R

,
t

R4

)
dxdt + cRn−4/(p−1) . (30)

Next, by (12) we know that there exists C, ρ > 0 such that

|x|4/(p−1)u0(x) ≥ λ

2
if |x| ≥ ρ .

Let R be sufficiently large so that Bρ ⊂ RK. For such R we have∫
RK

u0(x)ψ1

( x
R

)
dx ≥ −‖ψ1‖∞

∫
Bρ

|u0(x)| dx + λ

2

∫
RK\Bρ

ψ1

( x
R

) dx

|x|4/(p−1)
.

Clearly, there exist 0 < α < β such that if R is sufficiently large then XR := {x ∈
R

n; αR < |x| < βR} ⊂ RK \ Bρ . Therefore, the last inequality becomes∫
RK

u0(x)ψ1

( x
R

)
dx ≥ −c + λ

2
min

α≤|y|≤β ψ1(y)
∫

XR

dx

|x|4/(p−1)
≥ −c + cλRn−4/(p−1).

(31)

Summarizing, by using (30) and (31) into (28), we arrive at

(1 − δ)

R4T∫
0

∫
RK

|u+(x, t)|pv
(

x
R

,
t

R4

)
dxdt

−(1 + δ)

R4T∫
0

∫
RK

|u−(x, t)|pv
(

x
R

,
t

R4

)
dxdt

≤ cRn−4/(p−1) − cλRn−4/(p−1) + c .

If we divide by 1 + δ and we take λ sufficiently large (say λ ≥ 	), the previous
inequality becomes

R4T∫
0

∫
RK

|u−(x, t)|pv
(

x
R

,
t

R4

)
dxdt

−γ
R4T∫
0

∫
RK

|u+(x, t)|pv
(

x
R

,
t

R4

)
dxdt ≥ cRn−4/(p−1)
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for sufficiently large R. Finally, performing the change of variables (29) and letting
R → ∞, proves (13).

Assume now that (12) is replaced by lim sup|x|→∞ |x|4/(p−1)u0(x) < 0 and consider
again (28). In this case, instead of (31) we obtain

∫
RK

u0(x)ψ1

( x
R

)
dx ≤ c − cλRn−4/(p−1).

Moreover, we may replace (30) with

I ≥ −δ
R4T∫
0

∫
RK

|u(x, t)|p v
(

x
R

,
t

R4

)
dxdt − cRn−4/(p−1).

The proof may now be completed as in the case where (12) holds.

5 Some technical results

Here and in all the remaining of the paper, with c we denote positive constants which
may have different values also within the same line. Moreover, in order to avoid heavy
notations, when we write 1/αβ, we mean 1

αβ
.

For both the proofs of Propositions 2 and 3 we will make use of the following trivial
facts:

min

{
1
a

,
1
b

}
≤ 2

a + b
for all a, b > 0, (32)

and for all (m, q) ∈ [N \ {0}] × (0, +∞) there exist γ1, γ2 > 0 such that

γ1

(
m∑

i=1

αi

)q

≤
m∑

i=1

α
q
i ≤ γ2

(
m∑

i=1

αi

)q

for all αi ≥ 0. (33)

We now prove five technical statements (uniform bounds for 3-dimensional inte-
grals depending on a parameter T > 0) which are needed for the proof of Propo-
sition 3. Most delicate are Lemmas 3 and 4, where the essential idea consists in a
suitable splitting of the domain of integration. The integrals �i (i = 1, . . . , 5) below
depend on T but, for simplicity, we omit to emphasize this dependence.

Lemma 1 Assume that p > 1 + 4/n. Then, there exists c > 0 such that

�1 : =
∞∫

0

1
(1 + w2)n/2

1/2T∫
0

ρn−5e−µρ4/3

×
Tρ∫
0

σ 3 dσ dρ dw(
T3

ρ
(Tρ − σ)+ (σ − 1)4 + σ 2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.
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Proof First, we note that for the integral considered we have σ ≤ Tρ ≤ 1
2 . Hence,

|σ − 1| ≥ 1
2 and

�1 ≤
∞∫

0

dw
(1 + w2)n/2

1/2T∫
0

ρn−5e−µρ4/3

Tρ∫
0

T3ρ3 dσ dρ(
T3

ρ
(Tρ − σ)+ 1

16

)p/(p−1)

≤ c

1/2T∫
0

ρn−1e−µρ4/3

⎡
⎢⎣ 1(

T3

ρ
(Tρ − σ)+ 1

16

)1/(p−1)

⎤
⎥⎦

Tρ

0

dρ

≤ c

∞∫
0

ρn−1e−µρ4/3
dρ = c

and the uniform upper bound follows. ��

Lemma 2 Assume that p > 1 + 4/n. Then, there exists c > 0 such that

�2 : =
∞∫

0

1
(1 + w2)n/2

3/T∫
1/2T

ρn−5e−µρ4/3

×
Tρ/2∫
0

σ 3 dσ dρ dw(
T3

ρ
(Tρ − σ)+ (σ − 1)4 + σ 2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof As long as �2 is involved, we have σ 3 ≤ T3ρ3

8 . Then,

�2 ≤ c T3

∞∫
0

dw
(1 + w2)n/2

3/T∫
1/2T

ρn−2e−µρ4/3

Tρ/2∫
0

dσ dρ[
T3

ρ
(Tρ − σ)

]p/(p−1)

≤ c

3/T∫
1/2T

ρn−1e−µρ4/3

⎡
⎢⎣ 1(

T3

ρ
(Tρ − σ)

)1/(p−1)

⎤
⎥⎦

Tρ/2

0

dρ ≤ c

T4/(p−1)

3/T∫
1/2T

ρn−1e−µρ4/3
dρ

[τ = Tρ] = c

Tn+4/(p−1)

3∫
1/2

τn−1 exp

[
−µ
( τ

T

)4/3
]

dτ =: f (T).

It is clear that f (T) is well-defined (finite) for all T ∈ (0, ∞). Moreover, f (T) → 0 for
both T → 0 and T → ∞ so that the uniform upper bound for �2 follows. ��
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Lemma 3 Assume that p > 1 + 4/n. Then, there exists c > 0 such that

�3 : =
∞∫

0

1
(1 + w2)n/2

1/T∫
1/2T

ρn−5e−µρ4/3

×
Tρ∫

Tρ/2

σ 3 dσ dρ dw(
T3

ρ
(Tρ − σ)+ (σ − 1)4 + σ 2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof Since σ ≥ Tρ
2 ≥ 1

4 and T3

ρ
≥ 1

8ρ4 , �3 converges uniformly in T whenever the
integral

∞∫
0

1
(1 + w2)n/2

1/T∫
1/2T

ρn−5e−µρ4/3

Tρ∫
Tρ/2

σ 3 dσ dρ dw[
Tρ−σ

8ρ4 + (σ − 1)4 + 1
16(1+w2)2

]p/(p−1)

does so. Moreover, we remark that

1∫
0

1
(1 + w2)n/2

1/T∫
1/2T

ρn−5e−µρ4/3

Tρ∫
Tρ/2

σ 3 dσ dρ dw[
Tρ−σ

8ρ4 + (σ − 1)4 + 1
16(1+w2)2

]p/(p−1)

≤ c

∞∫
0

ρn−5e−µρ4/3
dρ

so that the statement follows if there exists c > 0 (independent of T) such that

�′
3 : =

∞∫
1

1
wn

1/T∫
1/2T

ρn−5e−µρ4/3

Tρ∫
Tρ/2

dσ dρ dw[
Tρ−σ

8ρ4 + (σ − 1)4 + 1
64w4

]p/(p−1)

≤ c for all T > 0. (34)

Consider the map
h(ρ) := min{1, ρ4} · (1 − Tρ)4 . (35)

If ρ ∈ [ 1
2T , 1

T ], then Tρ − h(ρ) ≥ Tρ − (1 − Tρ)4 > Tρ
2 . Hence, we can split the inner

integral in (34) as follows

Tρ∫
Tρ/2

=
Tρ−h(ρ)∫
Tρ/2

+
Tρ∫

Tρ−h(ρ)

=: L1 + L2 (36)

and we estimate L1 and L2. This splitting is the essential idea in this proof in order to
cover the full super-Fujita range p > 1 + 4/n.
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First, we note that

L1 ≤
Tρ−h(ρ)∫
Tρ/2

dσ[
Tρ−σ

8ρ4 + 1
64w4

]p/(p−1)
=
⎡
⎢⎣ 8(p − 1)ρ4

[
Tρ−σ

8ρ4 + 1
64w4

]1/(p−1)

⎤
⎥⎦

Tρ−h(ρ)

Tρ/2

≤ 8(p − 1)ρ4

[
h(ρ)
8ρ4 + 1

64w4

]1/(p−1)
≤ c ρ4

[
h(ρ)
ρ4 + 1

w4

]1/(p−1)
. (37)

Next, since σ ≤ Tρ ≤ 1, by using (33) we note that

L2 ≤ c

Tρ∫
Tρ−h(ρ)

dσ[
1 − σ + 1

2
√

2w

]4p/(p−1)
≤ c h(ρ)[

1 − Tρ + 1
w

]4p/(p−1)
. (38)

Inserting (37) and (38) into (36), and recalling the definition of �′
3 in (34), entails

�′
3 ≤ c

1/T∫
1/2T

ρn−5e−µρ4/3

∞∫
1

1
wn

⎡
⎢⎣ ρ4

[
h(ρ)
ρ4 + 1

w4

]1/(p−1)
+ h(ρ)[

1 − Tρ + 1
w

]4p/(p−1)

⎤
⎥⎦dwdρ

(39)
and we now estimate the two inner integrals in (39). Since (1 − Tρ)−1 ≥ 2, for the
first integral we have

∞∫
1

ρ4

[
h(ρ)
ρ4 + 1

w4

]1/(p−1)

dw
wn

≤ ρ4

⎛
⎜⎝

1/(1−Tρ)∫
1

w4/(p−1)−n dw + ρ4/(p−1)

h(ρ)1/(p−1)

∞∫
1/(1−Tρ)

dw
wn

⎞
⎟⎠

≤ ρ4

[
�1(1 − Tρ)+ c ρ4/(p−1)

min{1, ρ4/(p−1)} · (1 − Tρ)4/(p−1)−n+1

]
, (40)

where (recall that 4
p−1 < n)

�1(s) = c

⎧⎨
⎩

sn−1−4/(p−1) if 4/(p − 1)− n > −1
| log s| if 4/(p − 1)− n = −1
1 if 4/(p − 1)− n < −1 .
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For the second inner integral in (39) we have

∞∫
1

h(ρ)[
1 − Tρ + 1

w

]4p/(p−1)

dw
wn

≤ h(ρ)

⎛
⎜⎝

1/(1−Tρ)∫
1

w4p/(p−1)−n dw + 1
(1 − Tρ)4p/(p−1)

∞∫
1/(1−Tρ)

dw
wn

⎞
⎟⎠

≤ min{1, ρ4}
(
�2(1 − Tρ)+ c

(1 − Tρ)4/(p−1)−n+1

)
, (41)

where

�2(s) = c

⎧⎨
⎩

sn−1−4/(p−1) if 4p/(p − 1)− n > −1
s4| log s| if 4p/(p − 1)− n = −1
s4 if 4p/(p − 1)− n < −1.

Inserting (40, 41) into (39) gives

�′
3 ≤ c

1/T∫
1/2T

ρn−1e−µρ4/3

(
�1(1 − Tρ)+ c ρ4/(p−1)

min{1, ρ4/(p−1)} · (1 − Tρ)4/(p−1)−n+1

)
dρ

+ c

1/T∫
1/2T

ρn−5e−µρ4/3
min{1, ρ4}

(
�2(1 − Tρ)+ c

(1 − Tρ)4/(p−1)−n+1

)
dρ =: f (T).

Since 4/(p − 1)− n + 1 < 1 by the assumption on the exponent being “super-Fujita”,
the function f is well-defined (finite) for all T ∈ (0, ∞). In order to study its behaviour
as T → 0 and T → ∞, we perform the change of variables τ = Tρ. Then, we get

f (T) = c
Tn

1∫
1/2

τn−1 exp

[
−µ
( τ

T

)4/3
]

×
(
�1(1 − τ)+ c τ 4/(p−1)

min{τ , T}4/(p−1) · (1 − τ)4/(p−1)−n+1

)
dτ

+ c
Tn

1∫
1/2

τn−5 exp

[
−µ
( τ

T

)4/3
]

min{T, τ }4

×
(
�2(1 − τ)+ c

(1 − τ)4/(p−1)−n+1

)
dτ .

For all T ≥ 1 we have min{τ , T} = τ so that

f (T) ≤ c
Tn

1∫
1/2

τn−1
(
�1(1 − τ)+�2(1 − τ)+ c

(1 − τ)4/(p−1)−n+1

)
dτ
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and it is clear that f (T) → 0 as T → ∞. For all T ≤ 1/2 we have min{τ , T} = T so
that

f (T) ≤ c e−cT−4/3

Tn

1∫
1/2

τn−1

(
�1(1 − τ)+ c τ 4/(p−1)

T4/(p−1) · (1 − τ)4/(p−1)−n+1

)
dτ

+c e−cT−4/3

Tn−4

1∫
1/2

τn−5
(
�2(1 − τ)+ c

(1 − τ)4/(p−1)−n+1

)
dτ

and f (T) → 0 as T → 0. This proves (34) and shows that �3 is uniformly bounded.
��

Lemma 4 Assume that p > 1 + 4/n. Then, there exists c > 0 such that

�4 : =
∞∫

0

1
(1 + w2)n/2

3/T∫
1/T

ρn−5e−µρ4/3

×
Tρ∫

Tρ/2

σ 3 dσ dρ dw(
T3

ρ
(Tρ − σ)+ (σ − 1)4 + σ 2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof This proof follows the same lines as that of Lemma 3. Let us just briefly sketch
it. As for (34), we see that the statement is equivalent to the existence of some c > 0
such that

�′
4 : =

∞∫
1

1
wn

3/T∫
1/T

ρn−5e−µρ4/3

×
Tρ∫

Tρ/2

dσ dρ dw[
Tρ−σ

8ρ4 + (σ − 1)4 + 1
64w4

]p/(p−1)
≤ c for all T > 0. (42)

Consider again the map h defined in (35). Since 1 ≤ Tρ ≤ 3, the following three facts
hold

Tρ − h(ρ)
32

≥ Tρ
2

, Tρ − h(ρ)
32

≥ 1 , Tρ − 1 − h(ρ)
32

≥ Tρ − 1
2

. (43)

Instead of (36), the first inequality in (43) suggests to split here the inner integral in
(42) as

Tρ∫
Tρ/2

=
Tρ−h(ρ)/32∫

Tρ/2

+
Tρ∫

Tρ−h(ρ)/32

=: M1 + M2.
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Arguing as for (37) and (38), we obtain

M1 ≤ c ρ4

[
h(ρ)
ρ4 + 1

w4

]1/(p−1)
, M2 ≤ c h(ρ)[

Tρ − 1 + 1
w

]4p/(p−1)
,

where we used both the second and third inequality in (43).
Finally, repeating the arguments relative to (40, 41), we conclude that

�′
4 ≤ c

3/T∫
1/T

ρn−1e−µρ4/3

(
�1(Tρ − 1)+ c ρ4/(p−1)

min{1, ρ4/(p−1)}(Tρ − 1)4/(p−1)−n+1

)
dρ

+ c

3/T∫
1/T

ρn−5e−µρ4/3
min{1, ρ4}

(
�2(Tρ − 1)+ c

(Tρ − 1)4/(p−1)−n+1

)
dρ.

With the change of variables τ = Tρ one can then show (42), namely uniform (with
respect to T) boundedness of �′

4. ��

Lemma 5 Assume that p > 1 + 4/n. Then, there exists c > 0 such that

�5 : =
∞∫

0

1
(1 + w2)n/2

∞∫
3/T

ρn−5e−µρ4/3

×
Tρ∫
0

σ 3 dσ dρ dw(
T3

ρ
(Tρ − σ)+ (σ − 1)4 + σ 2

(1+w2)2

)p/(p−1)
≤ c

for all T > 0.

Proof As long as �5 is involved, we have Tρ ≥ 3. Hence, we may estimate:

�5 ≤
∞∫

0

dw
(1 + w2)n/2

∞∫
3/T

ρn−5e−µρ4/3

×
⎛
⎜⎝8ρp/(p−1)

T3p/(p−1)

2∫
0

dσ

(3 − σ)p/(p−1)
+

Tρ∫
2

σ 3 dσ

(σ − 1)4p/(p−1)

⎞
⎟⎠dρ

≤ c

∞∫
3/T

ρn−5e−µρ4/3

⎛
⎝c ρp/(p−1)

T3p/(p−1)
+

∞∫
2

σ 3 dσ

(σ − 1)4p/(p−1)

⎞
⎠ dρ
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[τ = Tρ] ≤ c

Tn−4+4p/(p−1)

∞∫
3

τn−5+p/(p−1) exp

[
−µ
( τ

T

)4/3
]

dτ

+ c

∞∫
0

ρn−5e−µρ4/3
dρ

≤ c + c

Tn+4/(p−1)

∞∫
3

τn−5+p/(p−1) exp

[
−µ
( τ

T

)4/3
]

dτ .

Therefore, the statement will follow if we show that the function

g(T) := 1
Tn+4/(p−1)

∞∫
3

τn−5+p/(p−1) exp

[
−µ
( τ

T

)4/3
]

dτ

remains bounded when T varies over (0, ∞). Since g(T) is finite for every T ∈ (0, ∞),
it suffices to study the limits of g(T) when T → 0 and T → ∞. We first remark that
for all T < 1 we may write

g(T) = 1
Tn+4/(p−1)

∞∫
3

τn−5+p/(p−1) exp

[
−µ

2

( τ
T

)4/3
]

exp

[
−µ

2

( τ
T

)4/3
]

dτ

≤
exp

[
−µ

2

(
3
T

)4/3
]

Tn+4/(p−1)

∞∫
3

τn−5+p/(p−1) exp
[

− µ

2
τ 4/3

]
dτ

= c

Tn+4/(p−1)
exp

[
−µ

2

( 3
T

)4/3
]

and the last term tends to 0 as T → 0. Next, for all T > 1 we write

g(T) = 1
Tn+4/(p−1)

⎛
⎜⎝

3Tn/(n−1)∫
3

+
∞∫

3Tn/(n−1)

⎞
⎟⎠ .

Then, by using the two following facts

τ ≤ 3Tn/(n−1) �⇒ 1
T

≤ c

τ (n−1)/n
, τ ≥ 3Tn/(n−1) �⇒ τ

T
≥ cτ 1/n ,



Global solutions for superlinear parabolic equations 407

we may estimate g(T) also when T > 1:

g(T) ≤ c

3Tn/(n−1)∫
3

τn−5+p/(p−1)

τn−1+4(n−1)/n(p−1)
dτ

+ c

Tn+4/(p−1)

∞∫

3Tn/(n−1)

τn−5+p/(p−1) exp[−cτ 4/3n] dτ

≤ c

∞∫
3

dτ

τ (3np−4)/n(p−1)
+ c

Tn+4/(p−1)

∞∫
3

τn−5+p/(p−1) exp[−cτ 4/3n] dτ .

Since 3np−4 > n(p−1), the above term remains bounded as T → ∞. This completes
the proof of the lemma. ��

6 Proof of Proposition 2

In order to prove Proposition 2 we introduce the function

G1(x, t) :=
∫
Rn

exp

[
−µ

( |y|4
t

)1/3]
dy

tn/4(1 + |x − y|4/(p−1))
, (x, t) ∈ R

n+1+ .

With the change of variables y = s1/4z, we may also rewrite G1 as

G1(x, t) =
∫
Rn

exp
[
−µ|z|4/3

] dz

(1 + |x − t1/4z|4/(p−1))
, (x, t) ∈ R

n+1+ .

We first estimate G1 for small values of |x|:
Lemma 6 Assume that p > 1 + 4/n. There exists a constant K1 = K1(n, p,µ) > 0 such
that

G1(x, t) ≤ K1

1 + |x|4/(p−1) + t1/(p−1)
for all |x| ≤ 1 , t ≥ 0.

Proof For |x| ≤ 1, we have

G1(x, t) ≤
∫
Rn

exp
[
−µ|z|4/3

]
dz = c ≤ A1

1 + |x|4/(p−1)
for all |x| ≤ 1 , t ≥ 0, (44)

for some A1 > 0. Moreover, with the change of variables w = z − t−1/4x we obtain

G1(x, t) ≤ 1
t1/(p−1)

⎡
⎢⎣

∫

|z−t−1/4x|<1

dz

|z − t−1/4x|4/(p−1)
+

∫

|z−t−1/4x|>1

exp
[
−µ|z|4/3

]
dz

⎤
⎥⎦

≤ 1
t1/(p−1)

⎡
⎢⎣
∫

|w|<1

dw

|w|4/(p−1)
+
∫
Rn

exp
[
−µ|z|4/3

]
dz

⎤
⎥⎦

= A2

t1/(p−1)
for all (x, t) ∈ R

n+1+ , (45)
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with A2 being finite because 4
p−1 < n. Clearly, A2 is independent of x and t.

By combining (44) and (45), for all |x| ≤ 1 and t ≥ 0 we obtain

G1(x, t) ≤ min

{
A1

1 + |x|4/(p−1)
,

A2

t1/(p−1)

}
≤ max{A1, A2} min

{
1

1 + |x|4/(p−1)
,

1
t1/(p−1)

}
.

By (32), this yields

G1(x, t) ≤ 2 · max{A1, A2}
1 + |x|4/(p−1) + t1/(p−1)

for all |x| ≤ 1, t ≥ 0,

which proves the statement with K1 = 2 max{A1, A2}. ��

Assume now that |x| > 1. Then, we prove

Lemma 7 Assume that p > 1 + 4/n. There exists a constant K2 = K2(n, p,µ) > 0 such
that

G1(x, t) ≤ K2

1 + |x|4/(p−1) + t1/(p−1)
for all |x| > 1, t ≥ 0.

Proof Put F(x, t) := (1 + |x|4/(p−1) + t1/(p−1)) · G1(x, t). Then, the statement follows if
we show that F(x, t) ≤ K2 for all |x| > 1 and t ≥ 0. When |x| > 1, we have

F(x, t) ≤ c
∫
Rn

exp
[
−µ|z|4/3

] |x|4/(p−1) + t1/(p−1)

|x − t1/4z|4/(p−1)
dz.

Therefore, simplifying by |x|4/(p−1) and putting T := t1/4|x|−1, we obtain

F(x, t) ≤ c(1 + T4/(p−1))

∫
Rn

exp
[
−µ|z|4/3

] dz∣∣∣ x
|x| − Tz

∣∣∣4/(p−1)
.

At this stage, only the direction x
|x| of x is involved. Hence, with no loss of generality,

we may assume that x
|x| = e1 = (1, 0, . . . , 0), the first unit vector of the canonical basis

of R
n. In this case, the above estimate reads

F(x, t) ≤ c(1 + T4/(p−1))

∫
Rn

exp
[
−µ|z|4/3

] dz

|e1 − Tz|4/(p−1)
=: c�(T) .

Since 4
p−1 < n, the function �(T) is well-defined (finite) for all T ∈ (0, ∞). In order

to prove the uniform boundedness of F, we have to show that�(T) remains bounded



Global solutions for superlinear parabolic equations 409

in both the cases T → 0 and T → ∞. When T → ∞, we have

�(T) = 1 + T4/(p−1)

T4/(p−1)

⎡
⎢⎢⎢⎣

∫
∣∣∣z− e1

T

∣∣∣<1

exp
[−µ|z|4/3] dz∣∣z − e1

T

∣∣4/(p−1)
+

∫
∣∣∣z− e1

T

∣∣∣>1

exp
[−µ|z|4/3] dz∣∣z − e1

T

∣∣4/(p−1)

⎤
⎥⎥⎥⎦

[
w = z − e1

T

]
≤ 1 + T4/(p−1)

T4/(p−1)

⎡
⎢⎣
∫

|w|<1

dw

|w|4/(p−1)
+
∫
Rn

e−µ|z|4/3 dz

⎤
⎥⎦ = O(1),

because (once more!) 4
p−1 < n. When T → 0, we have

�(T) ≤ O(1)

⎡
⎢⎣

∫
|e1−Tz|<1/2

exp
[−µ|z|4/3] dz

|e1 − Tz|4/(p−1)
+

∫
|e1−Tz|>1/2

exp
[−µ|z|4/3] dz

|e1 − Tz|4/(p−1)

⎤
⎥⎦

[w = e1 − Tz]

≤ O(1)

⎡
⎢⎣exp[−cT−4/3]

Tn

∫
|w|<1/2

dw

|w|4/(p−1)
+ c

∫
Rn

e−µ|z|4/3 dz

⎤
⎥⎦ = O(1),

where we also used the fact that |z| > 1
2T whenever |e1 − Tz| < 1/2. Therefore, �(T)

is uniformly bounded on (0, ∞) and the proof of the lemma follows. ��
Recalling the definition of G1, Proposition 2 follows at once from Lemmas 6, 7 by

taking C1 = ω1 max{K1, K2}.

7 Proof of Proposition 3

Our proof of Proposition 3 requires several lemmas. We define the function

G2(x, t) : =
t∫

0

∫
Rn

exp

[
−µ

( |y|4
s

)1/3]

× dy ds

sn/4
(
1 + (t − s)1/(p−1) + |x − y|4/(p−1)

)p , (x, t) ∈ R
n+1+ .

With the change of variables y = t1/4z, we may also rewrite G2 as

G2(x, t) =
t∫

0

∫
Rn

exp
(−µ|z|4/3)[

1 + (t − s)1/(p−1) + |x − s1/4z|4/(p−1)
]p dz ds, (x, t) ∈ R

n+1+ .

We first obtain an upper bound for G2 in terms of the time variable:

Lemma 8 Assume that p > 1 + 4/n. There exists a constant B1 = B1(n, p,µ) > 0 such
that

G2(x, t) ≤ B1

t1/(p−1)
for all (x, t) ∈ R

n+1+ .
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Proof We split the integral as follows:

G2(x, t) =
t∫

0

∫

|z−s−1/4x|<1/2

+
t∫

0

∫

|z−s−1/4x|>1/2

=: I1 + I2 (46)

and we estimate separately I1 and I2. First, note that

I1 ≤
t∫

0

∫

|z−s−1/4x|<1/2

exp
(−µ|z|4/3)[

(t − s)1/(p−1) + |x − s1/4z|4/(p−1)
]p dz ds

[w = z − s−1/4x] ≤
t∫

0

∫
|w|<1/2

dw ds[
(t − s)1/(p−1) + s1/(p−1)|w|4/(p−1)

]p

[by (33)] ≤ c
∫

|w|<1/2

t∫
0

ds dw[
t − s + s|w|4]p/(p−1)

≤ c

t1/(p−1)

∫
|w|<1/2

dw

(1 − |w|4)|w|4/(p−1)
≤ c

t1/(p−1)
(47)

since 4
p−1 < n in view of the assumption p > 1 + 4

n . Next, we have

I2 ≤
t∫

0

∫

|z−s−1/4x|>1/2

exp
(−µ|z|4/3)[

(t − s)1/(p−1) + s1/(p−1)|xs−1/4 − z|4/(p−1)
]p dz ds

≤
t∫

0

∫

|z−s−1/4x|>1/2

exp
(−µ|z|4/3)[

(t − s)1/(p−1) + ( s
16 )

1/(p−1)
]p dz ds

[by (33)] ≤ c
∫
Rn

exp
(
−µ|z|4/3

)
dz ·

t∫
0

ds

[16t − 15s]p/(p−1)
≤ c

t1/(p−1)
. (48)

Combining (46–48) proves the statement. ��

Next, we prove an upper bound for G2 for small values of |x|:

Lemma 9 Assume that p > 1 + 4/n. There exists a constant B2 = B2(n, p,µ) > 0 such
that

G2(x, t) ≤ B2

1 + |x|4/(p−1)
for all |x| ≤ 1 , t ≥ 0.

Proof Since |x| ≤ 1, it suffices to show that G2(x, t) ≤ B2/2 for some B2 > 0.
This follows by performing the change of variables σ = t − s and the following
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trivial estimate

G2(x, t) ≤
∫
Rn

e−µ|z|4/3 dz

∞∫
0

ds

[1 + σ 1/(p−1)]p
:= B2

2
,

the constant B2 being independent of x and t. ��

We now come to the most delicate estimate, an upper bound for G2 for large values
of |x|:

Lemma 10 Assume that n ≥ 2 and p > 1 + 4/n. There exists a constant B3 =
B3(n, p,µ) > 0 such that

G2(x, t) ≤ B3

1 + |x|4/(p−1)
for all |x| > 1 , t ≥ 0.

Proof We will show that F(x, t) := (1 + |x|4/(p−1))G2(x, t) ≤ B3 for all (x, t) in their
ranges. With the change of variables σ = |z|

|x| s1/4 and by simplifying by |x|4/(p−1) we
obtain

F(x, t) = 4
∫
Rn

exp[−µ|z|4/3]
|z|4

×
|z|
|x| t1/4∫
0

(1 + |x|−4/(p−1)) σ 3

[
|x|−4/(p−1) +

(
t

|x|4 − σ 4

|z|4
)1/(p−1) +

∣∣∣ x
|x| − z

|z|σ
∣∣∣4/(p−1)]p

dσ dz.

Put y := x/|x| so that |y| = 1 and y defines the direction of x; with no loss of generality
we may take y = e1 = (1, 0, . . . , 0), the first unit vector of the canonical basis. Let also
T := t1/4

|x| . Then, recalling |x| > 1, we obtain

F(x, t) ≤ c
∫
Rn

exp[−µ|z|4/3]
|z|4

×
|z|T∫
0

σ 3 dσ dz(
T4 − σ 4

|z|4
)p/(p−1) + (σ − 1)4p/(p−1) +

[(
1 − z1|z|

)
2σ
]2p/(p−1)

where we used (33) and the following fact:

∣∣∣∣e1 − z
|z|σ

∣∣∣∣
4/(p−1)

=
(

1 − 2
z1

|z|σ + σ 2
)2/(p−1)

=
[
(σ − 1)2 +

(
1 − z1

|z|
)

2σ
]2/(p−1)

, z = (z1, . . . , zn).
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Now put z′ = (z2, . . . , zn) ∈ R
n−1 so that z = (z1, z′) and |z|2 = z2

1 + |z′|2. Passing to
radial coordinates r := |z′| in R

n−1 we obtain

F(x, t) ≤ c

∞∫
0

rn−2

∞∫
−∞

exp[−µ(z2
1 + r2)2/3]

(z2
1 + r2)2

×
T
√

z2
1+r2∫

0

σ 3 dσ dz1 dr(
T4 − σ 4

(z2
1+r2)2

)p/(p−1) + (σ − 1)4p/(p−1) +
[(

1 − z1√
z2

1+r2

)
2σ
]2p/(p−1)

.

With the change of variables z1 = rw the previous estimate becomes

F(x, t) ≤ c

∞∫
0

rn−5

∞∫
−∞

exp[−µr4/3(1 + w2)2/3]
(1 + w2)2

×
Tr

√
1+w2∫

0

σ 3 dσ dw dr(
T4 − σ 4

r4(1+w2)2

)p/(p−1) + (σ − 1)4p/(p−1) +
[(

1 − w√
1+w2

)
2σ
]2p/(p−1)

.

Making use of the two inequalities

1 − w√
1 + w2

=
(√

1 + w2 + w
) (√

1 + w2 − w
)

(√
1 + w2 + w

)√
1 + w2

≥ 1
2(1 + w2)

for all w ∈ R

and

T4 − σ 4

r4(1 + w2)2
= 1

r4(1 + w2)2

(
Tr
√

1 + w2 − σ
)(

Tr
√

1 + w2 + σ
)

×
(

T2r2[1 + w2] + σ 2
)

≥ T3

r
√

1 + w2

(
Tr
√

1 + w2 − σ
)

for all σ ∈ [0, Tr
√

1 + w2],

we may estimate further the above expression by

F(x, t) ≤ c

∞∫
0

rn−5

∞∫
0

exp[−µr4/3(1 + w2)2/3]
(1 + w2)2

×
Tr

√
1+w2∫

0

σ 3 dσ dw dr(
T3

r
√

1+w2

)p/(p−1)(
Tr

√
1 + w2 − σ

)p/(p−1) + (σ − 1)4p/(p−1) +
(

σ

1+w2

)2p/(p−1)
,

where the integration with respect to w is now just over (0, ∞) since the integrand is
even with respect to w. We now use (33) and we make the further change of variables
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r = ρ/
√

1 + w2 to obtain

F(x, t) ≤ c

∞∫
0

1
(1 + w2)n/2

∞∫
0

ρn−5e−µρ4/3

×
Tρ∫
0

σ 3 dσ dρ dw(
T3

ρ
(Tρ − σ)+ (σ − 1)4 + σ 2

(1+w2)2

)p/(p−1)
. (49)

We split the integral on the right hand side of (49) as follows:

∞∫
0

1/2T∫
0

Tρ∫
0

+
∞∫

0

3/T∫
1/2T

Tρ/2∫
0

+
∞∫

0

1/T∫
1/2T

Tρ∫
Tρ/2

+
∞∫

0

3/T∫
1/T

Tρ∫
Tρ/2

+
∞∫

0

∞∫
3/T

Tρ∫
0

.

Then, thanks to Lemmas 1–5 we know that there exists B3 > 0 such that F(x, t) ≤ B3
for all (x, t) in their ranges. This completes the proof of the lemma. ��

We may now give the proof of Proposition 3. By Lemmas 8–10, for all (x, t) ∈ R
n+1+

we obtain

G2(x, t) ≤ min

{
B1

t1/(p−1)
,

max{B2, B3}
1 + |x|4/(p−1)

}

≤ max{B1, B2, B3} min

{
1

t1/(p−1)
,

1
1 + |x|4/(p−1)

}
.

Using (32), the last inequality yields

G2(x, t) ≤ 2 max{B1, B2, B3}
1 + |x|4/(p−1) + t1/(p−1)

.

Recalling the definition of G2, this proves Proposition 3 with C2 =2ω1 max{B1, B2, B3}.

8 A simple proof of Proposition 3 when p > n+4
n−4

In this section we assume that n ≥ 5, that p > n+4
n−4 , and we give a proof of Proposi-

tion 3 which is simpler (and shorter) than the one in the previous section. This proof
bases upon the idea that in a certain sense — for time independent right hand sides –
the limiting operator for the majorising kernel b̃ for t → ∞ is just a multiple of the
Green operator for the bi-Laplacian in R

n.
We denote by U0 an entire smooth positive radial (and radially decreasing) solution

of
�2U0 = Up

0 in R
n, (50)

which have been constructed in [12, Theorem 1]. According to [12, Theorem 3], there
exists C0 > 0 such that

C−1
0

1 + |x|4/(p−1)
≤ U0(x) ≤ C0

1 + |x|4/(p−1)
for all x ∈ R

n. (51)
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In particular, the convolution of the fundamental solution of �2 with Up
0 is well-

defined (the integral exists). Therefore, we may rewrite (50) as an integral equation

U0(x) = 1
2n(n − 2)(n − 4)en

∫
Rn

|x − y|4−nUp
0 (y)dy (52)

where en = |B1|, the measure of the unit ball. Let G2 = G2(x, t) denote the func-
tion defined in Sect. 7. Then, by making use of the coordinate transformation σ :=( |x−y|4

s

)1/3
, we may estimate

G2(x, t) ≤
∞∫

0

∫
Rn

s−n/4 exp

[
−µ

( |x − y|4
s

)1/3]
dy ds(

1 + |y|4/(p−1)
)p

≤ Cp
0

∫
Rn

∞∫
0

s−n/4 exp

[
−µ

( |x − y|4
s

)1/3]
Up

0 (y)ds dy

= 3Cp
0

∞∫
0

exp(−µσ)σ 3
4 n−4 dσ

∫
Rn

|x − y|4−nUp
0 (y)dy.

We denote

Ĉ = Ĉ(n,µ) =
∞∫

0

exp(−µσ)σ 3
4 n−4 dσ < ∞,

which is finite since n > 4. We now proceed by means of (52):

G2(x, t) ≤
(

6n(n − 2)(n − 4)enĈCp
0

) 1
2n(n − 2)(n − 4)en

∫
Rn

|x − y|4−nUp
0 (y)dy

=
(

6n(n − 2)(n − 4)enĈCp
0

)
U0(x)

≤ K0

1 + |x|4/(p−1)
for all (x, t) ∈ R

n+1+

with K0 := 6n(n − 2)(n − 4)enĈCp+1
0 . The just proved inequality, combined with

Lemma 8 and (32) concludes the proof of Proposition 3 when p > n+4
n−4 . ��

Remark 3 (1)When p < n+4
n−4 the arguments of the present section do not apply since

(50) admits no positive solutions, see [17, Theorem 1.4]. On the other hand, if p = n+4
n−4

positive entire radial solutions U0 = U0(x) of (50) do exist: however, they behave at
infinity as (1 + |x|n−4)−1 (see [19]) so that they do not satisfy the decay estimate (51).
For this reason, also in the critical Sobolev case p = n+4

n−4 , one cannot argue as in this
section.
(2) Under the assumption p > (n + 4)/(n − 4), the above proof replaces Lemmas
9 and 10. The proof simplifies because the term (t − s)1/(p−1) in the denominator of
G2 is dropped. This does not seem to be possible when trying to cover the full range
p > 1 + 4/n.
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